scholarly journals QuickPIC: a parallelized quasi-static PIC code for modeling plasma wakefield acceleration

Author(s):  
Chengkun Huang ◽  
V. Decyk ◽  
Shuoqin Wang ◽  
E.S. Dodd ◽  
Chuang Ren ◽  
...  
2021 ◽  
pp. 52-56
Author(s):  
V.I. Maslov ◽  
R.T. Ovsiannikov ◽  
D.S. Bondar ◽  
I.P. Levchuk ◽  
I.N. Onishchenko

Plasma wakefield acceleration promises compact sources of high-brightness relativistic electron and positron beams. Applications (particle colliders and free-electron lasers) of plasma wakefield accelerators demand low ener-gy spread beams and high-efficiency operation. Achieving both requires plateau formation on both the accelerating field for witness-bunch and the decelerating fields for driver-bunches by controlled beam loading of the plasma wave with careful tailored current profiles. We demonstrate by numerical simulation by 2.5D PIC code LCODE such optimal beam loading in a linear and blowout electron-driven plasma accelerator with RF generated low and high beam charge and high beam quality.


2021 ◽  
Vol 9 ◽  
Author(s):  
M. Turner ◽  
A. J. Gonsalves ◽  
S. S. Bulanov ◽  
C. Benedetti ◽  
N. A. Bobrova ◽  
...  

Abstract We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 $\mathrm{\mu} \mathrm{m}$ to 2 mm and lengths of 9 to 40 cm. To the best of the authors’ knowledge, 40 cm is the longest discharge capillary plasma waveguide to date. This length is important for $\ge$ 10 GeV electron energy gain in a single laser-driven plasma wakefield acceleration stage. Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to $<0.2$ % and their average on-axis plasma electron density to $<1$ %. These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.


2007 ◽  
Vol 22 (23) ◽  
pp. 4265-4269
Author(s):  
MITSURU UESAKA ◽  
ANDREA ROSSI

We categorized 16 contributions into the three sub-fields. Those are 1. Compton scattering X-ray sources, 2. FEL and RF photoinjectors and 3. Plasma wakefield acceleration/innovative acceleration schemes. We performed a half day working group for each sub-field. The titles and summaries of the contributions appear in the article.


2013 ◽  
Author(s):  
B. Hidding ◽  
J. B. Rosenzweig ◽  
Y. Xi ◽  
B. O'Shea ◽  
G. Andonian ◽  
...  

2017 ◽  
Vol 24 (10) ◽  
pp. 103114 ◽  
Author(s):  
Yangmei Li ◽  
Guoxing Xia ◽  
Konstantin V. Lotov ◽  
Alexander P. Sosedkin ◽  
Kieran Hanahoe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document