scholarly journals Stable bunch trains for plasma wakefield acceleration

2018 ◽  
Vol 60 (2) ◽  
pp. 024002 ◽  
Author(s):  
K V Lotov
2021 ◽  
Vol 9 ◽  
Author(s):  
M. Turner ◽  
A. J. Gonsalves ◽  
S. S. Bulanov ◽  
C. Benedetti ◽  
N. A. Bobrova ◽  
...  

Abstract We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 $\mathrm{\mu} \mathrm{m}$ to 2 mm and lengths of 9 to 40 cm. To the best of the authors’ knowledge, 40 cm is the longest discharge capillary plasma waveguide to date. This length is important for $\ge$ 10 GeV electron energy gain in a single laser-driven plasma wakefield acceleration stage. Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to $<0.2$ % and their average on-axis plasma electron density to $<1$ %. These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.


2007 ◽  
Vol 22 (23) ◽  
pp. 4265-4269
Author(s):  
MITSURU UESAKA ◽  
ANDREA ROSSI

We categorized 16 contributions into the three sub-fields. Those are 1. Compton scattering X-ray sources, 2. FEL and RF photoinjectors and 3. Plasma wakefield acceleration/innovative acceleration schemes. We performed a half day working group for each sub-field. The titles and summaries of the contributions appear in the article.


2013 ◽  
Author(s):  
B. Hidding ◽  
J. B. Rosenzweig ◽  
Y. Xi ◽  
B. O'Shea ◽  
G. Andonian ◽  
...  

2017 ◽  
Vol 24 (10) ◽  
pp. 103114 ◽  
Author(s):  
Yangmei Li ◽  
Guoxing Xia ◽  
Konstantin V. Lotov ◽  
Alexander P. Sosedkin ◽  
Kieran Hanahoe ◽  
...  

2018 ◽  
Vol 1067 ◽  
pp. 042013
Author(s):  
K. Wang ◽  
C. Bruni ◽  
K. Cassou ◽  
V. Chaumat ◽  
N. Delerue ◽  
...  

Author(s):  
A. Martinez de la Ossa ◽  
R. W. Assmann ◽  
M. Bussmann ◽  
S. Corde ◽  
J. P. Couperus Cabadağ ◽  
...  

We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.


2019 ◽  
Vol 9 (13) ◽  
pp. 2626 ◽  
Author(s):  
Bernhard Hidding ◽  
Andrew Beaton ◽  
Lewis Boulton ◽  
Sebastién Corde ◽  
Andreas Doepp ◽  
...  

Fundamental similarities and differences between laser-driven plasma wakefield acceleration (LWFA) and particle-driven plasma wakefield acceleration (PWFA) are discussed. The complementary features enable the conception and development of novel hybrid plasma accelerators, which allow previously not accessible compact solutions for high quality electron bunch generation and arising applications. Very high energy gains can be realized by electron beam drivers even in single stages because PWFA is practically dephasing-free and not diffraction-limited. These electron driver beams for PWFA in turn can be produced in compact LWFA stages. In various hybrid approaches, these PWFA systems can be spiked with ionizing laser pulses to realize tunable and high-quality electron sources via optical density downramp injection (also known as plasma torch) or plasma photocathodes (also known as Trojan Horse) and via wakefield-induced injection (also known as WII). These hybrids can act as beam energy, brightness and quality transformers, and partially have built-in stabilizing features. They thus offer compact pathways towards beams with unprecedented emittance and brightness, which may have transformative impact for light sources and photon science applications. Furthermore, they allow the study of PWFA-specific challenges in compact setups in addition to large linac-based facilities, such as fundamental beam–plasma interaction physics, to develop novel diagnostics, and to develop contributions such as ultralow emittance test beams or other building blocks and schemes which support future plasma-based collider concepts.


Sign in / Sign up

Export Citation Format

Share Document