Design of Concurrent Ciphertext Policy-Attribute Based Encryption Library for Multilevel Access of Encrypted Data

Author(s):  
Shardha Porwal ◽  
Sangeeta Mittal
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mingsheng Cao ◽  
Luhan Wang ◽  
Zhiguang Qin ◽  
Chunwei Lou

The wireless body area networks (WBANs) have emerged as a highly promising technology that allows patients’ demographics to be collected by tiny wearable and implantable sensors. These data can be used to analyze and diagnose to improve the healthcare quality of patients. However, security and privacy preserving of the collected data is a major challenge on resource-limited WBANs devices and the urgent need for fine-grained search and lightweight access. To resolve these issues, in this paper, we propose a lightweight fine-grained search over encrypted data in WBANs by employing ciphertext policy attribute based encryption and searchable encryption technologies, of which the proposed scheme can provide resource-constraint end users with fine-grained keyword search and lightweight access simultaneously. We also formally define its security and prove that it is secure against both chosen plaintext attack and chosen keyword attack. Finally, we make a performance evaluation to demonstrate that our scheme is much more efficient and practical than the other related schemes, which makes the scheme more suitable for the real-world applications.


2021 ◽  
Vol 13 (11) ◽  
pp. 279
Author(s):  
Siti Dhalila Mohd Satar ◽  
Masnida Hussin ◽  
Zurina Mohd Hanapi ◽  
Mohamad Afendee Mohamed

Managing and controlling access to the tremendous data in Cloud storage is very challenging. Due to various entities engaged in the Cloud environment, there is a high possibility of data tampering. Cloud encryption is being employed to control data access while securing Cloud data. The encrypted data are sent to Cloud storage with an access policy defined by the data owner. Only authorized users can decrypt the encrypted data. However, the access policy of the encrypted data is in readable form, which results in privacy leakage. To address this issue, we proposed a reinforcement hiding in access policy over Cloud storage by enhancing the Ciphertext Policy Attribute-based Encryption (CP-ABE) algorithm. Besides the encryption process, the reinforced CP-ABE used logical connective operations to hide the attribute value of data in the access policy. These attributes were converted into scrambled data along with a ciphertext form that provides a better unreadability feature. It means that a two-level concealed tactic is employed to secure data from any unauthorized access during a data transaction. Experimental results revealed that our reinforced CP-ABE had a low computational overhead and consumed low storage costs. Furthermore, a case study on security analysis shows that our approach is secure against a passive attack such as traffic analysis.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhe Liu ◽  
Fuqun Wang ◽  
Kefei Chen ◽  
Fei Tang

The revocable ciphertext-policy attribute-based encryption (R-CP-ABE) is an extension of ciphertext-policy attribute-based encryption (CP-ABE), which can realize user direct revocation and maintain a short revocation list. However, the revoked users can still decrypt the previously authorized encrypted data with their old key. The R-CP-ABE scheme should provide a mechanism to protect the encrypted data confidentiality by disqualifying the revoked users from accessing the previously encrypted data. Motivated by practical needs, we propose a new user R-CP-ABE scheme that simultaneously supports user direct revocation, short revocation list, and ciphertext update by incorporating the identity-based and time-based revocable technique. The scheme provides a strongly selective security proof under the modified decisional q -parallel bilinear Diffie–Hellman Exponent problem, where “strongly” means that the adversary can query the secret key of a user whose attribute set satisfies the challenge ciphertext access structure and whose identity is in the revocation list.


2019 ◽  
Vol 35 (3) ◽  
pp. 233-249
Author(s):  
Van Anh Trinh ◽  
Viet Cuong Trinh

We address the problem of searching on encrypted data with expressive searching predicate and multi-writer/multi-reader, a cryptographic primitive which has many concrete application scenarios such as cloud computing, email gateway application and so on. In this paper, we propose a public-key encryption with keyword search scheme relied on the ciphertext-policy attribute-based encryption scheme. In our system, we consider the model where a user can generate trapdoors by himself/herself, we thus can remove the Trusted Trapdoor Generator which can save the resource and communication overhead. We also investigate the problem of combination of a public key encryption used to encrypt data and a public-key encryption with keyword search used to encrypt keywords, which can save the storage of the whole system


2019 ◽  
Vol 62 (8) ◽  
pp. 1166-1177 ◽  
Author(s):  
Yuzhao Cui ◽  
Qiong Huang ◽  
Jianye Huang ◽  
Hongbo Li ◽  
Guomin Yang

Abstract Thanks to the ease of access and low expenses, it is now popular for people to store data in cloud servers. To protect sensitive data from being leaked to the outside, people usually encrypt the data in the cloud. However, management of these encrypted data becomes a challenging problem, e.g. data classification. Besides, how to selectively share data with other users is also an important and interesting problem in cloud storage. In this paper, we focus on ciphertext-policy attribute based encryption with equality test (CP-ABEET). People can use CP-ABEET to implement not only flexible authorization for the access to encrypted data, but also efficient data label classification, i.e. test of whether two encrypted data contain the same message. We construct an efficient CP-ABEET scheme, and prove its security based on a reasonable number-theoretic assumption. Compared with the only existing CP-ABEET scheme, our construction is more efficient in key generation, and has shorter attribute-related secret keys and better security.


Author(s):  
Mohan A. ◽  
vamshikrishna P.

People use the support of distributed computing however can't completely believe the cloud suppliers to have protection and confidential information. To guarantee secrecy, data owners relocate encoded information rather than plain texts. To divide the encoded documents with different clients, Ciphertext-Policy Attribute-based Encryption (CP-ABE) can be utilized. But this cannot become secure against some other assaults. Many other schemes did not gave guarantee that the cloud provider has the power to check whether a downloader can unscramble or not. Consequently, these files are accessible to everybody who is approachable to the cloud storage. An intentionally harmful assailant can download a great many records to start Economic Denial of Sustainability (EDoS) attacks, it will to a great extent expend the cloud asset. The owner will bear all the expenses for the cloud storage but the cloud provider doesn’t provide the whole information about the access or usage. There is no transparency for the owner. We have to solve these concerns. In order to this we are going to propose a solution for securing the encrypted data from EDoS attacks and providing the owner whole usage information about the cloud storage. We are implementing by using the arbitrary access policy of CP-ABE.


2019 ◽  
Vol 35 (3) ◽  
pp. 233-249
Author(s):  
Van Anh Trinh ◽  
Viet Cuong Trinh

We address the problem of searching on encrypted data with expressive searching predicate and multi-writer/multi-reader, a cryptographic primitive which has many concrete application scenarios such as cloud computing, email gateway application and so on. In this paper, we propose a public-key encryption with keyword search scheme relied on the ciphertext-policy attribute-based encryption scheme. In our system, we consider the model where a user can generate trapdoors by himself/herself, we thus can remove the Trusted Trapdoor Generator which can save the resource and communication overhead. We also investigate the problem of combination of a public key encryption used to encrypt data and a public-key encryption with keyword search used to encrypt keywords, which can save the storage of the whole system


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 66832-66844 ◽  
Author(s):  
Zhenhua Liu ◽  
Jing Xu ◽  
Yan Liu ◽  
Baocang Wang

Sign in / Sign up

Export Citation Format

Share Document