Modeling and analysis of applying Single Phase Matrix Converter in Dynamic Voltage Restorer

Author(s):  
E.D Rosli ◽  
R.F Mustapa ◽  
M. N. Hidayat ◽  
S.Z. Mohammad Noor ◽  
N. Hamzah
2015 ◽  
Vol 785 ◽  
pp. 409-413
Author(s):  
Eimi Diyana Rosli ◽  
Rijalul Fahmi bin Mustapa ◽  
M.N. Hidayat

Power delivered to consumer from utilities is susceptible to power quality problems. The most common power quality problems are voltage sag. Modern equipment nowadays are prone to problems associated with voltage sag. Such problems can be apprehended by several mitigation methods. This paper will discuss voltage sag mitigation method by eliminating the injection transformer in ordinary Dynamic Voltage Restorer (DVR) and applying Single Phase Matrix Converter (SPMC) in a single phase DVR topologies. The objective of this paper is to investigate the potential mitigation method without the injection transformer in the DVR topology. DVR circuit will be constructed and simulated using MATLAB/SIMULINK software. It is hoped that the result of this work will provide a simpler mitigation technique where existing DVR topology can be constructed with less component that provides unnecessary losses in the DVR itself.IndexTerms—Injection Transformer, DVR, SPMC, MATLAB/SIMULINK.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1794
Author(s):  
Luis Ramon Merchan-Villalba ◽  
Jose Merced Lozano-Garcia ◽  
Juan Gabriel Avina-Cervantes ◽  
Hector Javier Estrada-Garcia ◽  
Alejandro Pizano-Martinez ◽  
...  

This paper presents the design of a decoupled linear control strategy for a Dynamic Voltage Restorer (DVR) that utilizes a Matrix Converter (MC) as its core element and obtains the compensation energy directly from the power system. This DVR is intended to cope with power quality problems present in supply system voltages such as balanced and unbalanced variations (sags and swells), and harmonic distortion. The dynamic model of the complete system that includes the Matrix Converter, the input filters and the electrical grid, is performed in the synchronous reference frame (dq0), to have constant signals at the fundamental frequency, in order to design the proposed linear control strategy. The coupling in the dq components of the system output signals caused by the Park Transformation, is eliminated by a change of variable proposed for the controller design, giving rise to a decoupled linear control. In this way, the strategy developed makes it possible to establish an adequate transient response for the converter in terms of convergence speed and overshoot magnitude, in addition to ensuring closed-loop system stability under bounded operating conditions. Unlike other proposals that utilize complex modulation strategies to control the MC under adverse conditions at the input terminals, in this case, the ability to generate fully controllable output voltages, regardless of the condition of the input signals, is provided by the designed linear controller. This allows the development of a multifunctional compensator with a simple control that could be of easy implementation. In order to verify the performance of the control strategy developed, and the effectiveness of the proposed DVR to mitigate the power quality problems already mentioned, several case studies are presented. The operational capacity of the MC is demonstrated by the obtained simulation results, which clearly reveals the capability of the DVR to eliminate voltage swells up to 50% and sags less than 50%. The compensation limit reached for sags is 37%. In relation to compensation for unbalanced voltage variations, the DVR manages to reduce the voltage imbalance from 11.11% to 0.37%. Finally, with regard to the operation of the DVR as an active voltage filter, the compensator is capable of reducing a THD of 20% calculated on the supply voltage, to a value of 1.53% measured at the load terminals. In the last two cases, the DVR mitigates disturbances to a level below the criteria established in the IEEE standard for power quality. Results obtained from numerical simulations performed in MATLAB/Simulink serve to validate the proposal, given that for each condition analyzed, the MC had succesfully generated the adequate compensation voltages, thus corroborating the robustness and effectiveness of the control strategy developed in this proposal.


Author(s):  
Toufik Toumi ◽  
Ahmed Allali ◽  
Othmane Abdelkhalek ◽  
Abdallah Ben Abdelkader ◽  
Abdelmalek Meftouhi ◽  
...  

<span>This document proposes a photovoltaic (PV) based single-phase dynamic voltage restoration (DVR) device, it eliminates both sag and swell voltage and compensates for power. The proposed system requires a power source to compensate for the sag/swell voltage. This system has found a simple topology for the DVR that uses PV with two DC-DC boosts converters as the DC power source for the dynamic voltage conservator. The DC/DC boost converter powered by the PV generator is used to increase the voltage to meet the DC bus voltage requirements of the single-branch voltage source inverter (VSI). This system uses renewable energy; saves energy accordingly and supplies power to critical/sensitive loads. The control method used in this work is a Sliding Mode Control (SMC) method and relies on a phase locked loop (PLL) used to control the active filter. The effectiveness of the suggested method is confirmed by the MATLAB/Simulink® simulation results and some prototype experiments. These results show the capacity of the proposed DC link control.</span>


Sign in / Sign up

Export Citation Format

Share Document