A computer package for optimal multi-objective VAr planning in large scale power systems

Author(s):  
Ying-Tung Hsiao ◽  
Hsiao-Dong Chiang ◽  
Chun-Chang Liu ◽  
Yuan-Lin Chen
1994 ◽  
Vol 9 (2) ◽  
pp. 668-676 ◽  
Author(s):  
Ying-Tung Hsiao ◽  
Hsiao-Dong Chiang ◽  
Chung-Chang Liu ◽  
Yuan-Lin Chen

Author(s):  
Souhil Mouassa ◽  
Tarek Bouktir

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2048 ◽  
Author(s):  
Manuel Guerrero ◽  
Consolación Gil ◽  
Francisco G. Montoya ◽  
Alfredo Alcayde ◽  
Raúl Baños

Real-world complex systems are often modeled by networks such that the elements are represented by vertices and their interactions are represented by edges. An important characteristic of these networks is that they contain clusters of vertices densely linked amongst themselves and more sparsely connected to nodes outside the cluster. Community detection in networks has become an emerging area of investigation in recent years, but most papers aim to solve single-objective formulations, often focused on optimizing structural metrics, including the modularity measure. However, several studies have highlighted that considering modularityas a unique objective often involves resolution limit and imbalance inconveniences. This paper opens a new avenue of research in the study of multi-objective variants of the classical community detection problem by applying multi-objective evolutionary algorithms that simultaneously optimize different objectives. In particular, they analyzed two multi-objective variants involving not only modularity but also the conductance metric and the imbalance in the number of nodes of the communities. With this aim, a new Pareto-based multi-objective evolutionary algorithm is presented that includes advanced initialization strategies and search operators. The results obtained when solving large-scale networks representing real-life power systems show the good performance of these methods and demonstrate that it is possible to obtain a balanced number of nodes in the clusters formed while also having high modularity and conductance values.


Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


Sign in / Sign up

Export Citation Format

Share Document