scholarly journals Multi-Objective Evolutionary Algorithms to Find Community Structures in Large Networks

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2048 ◽  
Author(s):  
Manuel Guerrero ◽  
Consolación Gil ◽  
Francisco G. Montoya ◽  
Alfredo Alcayde ◽  
Raúl Baños

Real-world complex systems are often modeled by networks such that the elements are represented by vertices and their interactions are represented by edges. An important characteristic of these networks is that they contain clusters of vertices densely linked amongst themselves and more sparsely connected to nodes outside the cluster. Community detection in networks has become an emerging area of investigation in recent years, but most papers aim to solve single-objective formulations, often focused on optimizing structural metrics, including the modularity measure. However, several studies have highlighted that considering modularityas a unique objective often involves resolution limit and imbalance inconveniences. This paper opens a new avenue of research in the study of multi-objective variants of the classical community detection problem by applying multi-objective evolutionary algorithms that simultaneously optimize different objectives. In particular, they analyzed two multi-objective variants involving not only modularity but also the conductance metric and the imbalance in the number of nodes of the communities. With this aim, a new Pareto-based multi-objective evolutionary algorithm is presented that includes advanced initialization strategies and search operators. The results obtained when solving large-scale networks representing real-life power systems show the good performance of these methods and demonstrate that it is possible to obtain a balanced number of nodes in the clusters formed while also having high modularity and conductance values.

2019 ◽  
Vol 41 (9) ◽  
pp. 2521-2534 ◽  
Author(s):  
Ruochen Liu ◽  
Jiangdi Liu ◽  
Manman He

Community detection in complex networks plays an important role in mining and analyzing the structure and function of networks. However, traditional algorithms for community detection-based graph partition and hierarchical clustering usually have to face expensive computational costs or require some specific conditions when dealing with complex networks. Recently, community detection based on intelligent optimization attracts more and more attention because of its good effectiveness. In this paper, a new multi-objective ant colony optimization with decomposition (MACOD) for community detection in complex networks is proposed. Firstly, a new framework of multi-objective ant colony algorithm specialized initially for the complex network clustering is developed, in which two-objective optimization problem can be decomposed into a series of subproblems and each ant is responsible for one single objective subproblem and it targets a particular point in the Pareto front. Secondly, a problem-specific individual encoding strategy based on graph is proposed. Moreover, a new efficient local search mechanism is designed in order to improve the stability of the algorithm. The proposed MACOD has been compared with four other state of the art algorithms on two benchmark networks and seven real-world networks including three large-scale networks. Experimental results show that MACOD performs competitively for the community detection problems.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-20
Author(s):  
Zhe Chen ◽  
Aixin Sun ◽  
Xiaokui Xiao

Community detection on network data is a fundamental task, and has many applications in industry. Network data in industry can be very large, with incomplete and complex attributes, and more importantly, growing. This calls for a community detection technique that is able to handle both attribute and topological information on large scale networks, and also is incremental. In this article, we propose inc-AGGMMR, an incremental community detection framework that is able to effectively address the challenges that come from scalability, mixed attributes, incomplete values, and evolving of the network. Through construction of augmented graph, we map attributes into the network by introducing attribute centers and belongingness edges. The communities are then detected by modularity maximization. During this process, we adjust the weights of belongingness edges to balance the contribution between attribute and topological information to the detection of communities. The weight adjustment mechanism enables incremental updates of community membership of all vertices. We evaluate inc-AGGMMR on five benchmark datasets against eight strong baselines. We also provide a case study to incrementally detect communities on a PayPal payment network which contains users with transactions. The results demonstrate inc-AGGMMR’s effectiveness and practicability.


Author(s):  
Souhil Mouassa ◽  
Tarek Bouktir

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.


Author(s):  
Amany A. Naem ◽  
Neveen I. Ghali

Antlion Optimization (ALO) is one of the latest population based optimization methods that proved its good performance in a variety of applications. The ALO algorithm copies the hunting mechanism of antlions to ants in nature. Community detection in social networks is conclusive to understanding the concepts of the networks. Identifying network communities can be viewed as a problem of clustering a set of nodes into communities. k-median clustering is one of the popular techniques that has been applied in clustering. The problem of clustering network can be formalized as an optimization problem where a qualitatively objective function that captures the intuition of a cluster as a set of nodes with better in ternal connectivity than external connectivity is selected to be optimized. In this paper, a mixture antlion optimization and k-median for solving the community detection problem is proposed and named as K-median Modularity ALO. Experimental results which are applied on real life networks show the ability of the mixture antlion optimization and k-median to detect successfully an optimized community structure based on putting the modularity as an objective function.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1472 ◽  
Author(s):  
Manuel Guerrero ◽  
Raul Baños ◽  
Consolación Gil ◽  
Francisco G. Montoya ◽  
Alfredo Alcayde

Symmetry is a key concept in the study of power systems, not only because the admittance and Jacobian matrices used in power flow analysis are symmetrical, but because some previous studies have shown that in some real-world power grids there are complex symmetries. In order to investigate the topological characteristics of power grids, this paper proposes the use of evolutionary algorithms for community detection using modularity density measures on networks representing supergrids in order to discover densely connected structures. Two evolutionary approaches (generational genetic algorithm, GGA+, and modularity and improved genetic algorithm, MIGA) were applied. The results obtained in two large networks representing supergrids (European grid and North American grid) provide insights on both the structure of the supergrid and the topological differences between different regions. Numerical and graphical results show how these evolutionary approaches clearly outperform to the well-known Louvain modularity method. In particular, the average value of modularity obtained by GGA+ in the European grid was 0.815, while an average of 0.827 was reached in the North American grid. These results outperform those obtained by MIGA and Louvain methods (0.801 and 0.766 in the European grid and 0.813 and 0.798 in the North American grid, respectively).


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Vinícius da Fonseca Vieira ◽  
Carolina Ribeiro Xavier ◽  
Nelson Francisco Favilla Ebecken ◽  
Alexandre Gonçalves Evsukoff

Community structure detection is one of the major research areas of network science and it is particularly useful for large real networks applications. This work presents a deep study of the most discussed algorithms for community detection based on modularity measure: Newman’s spectral method using a fine-tuning stage and the method of Clauset, Newman, and Moore (CNM) with its variants. The computational complexity of the algorithms is analysed for the development of a high performance code to accelerate the execution of these algorithms without compromising the quality of the results, according to the modularity measure. The implemented code allows the generation of partitions with modularity values consistent with the literature and it overcomes 1 million nodes with Newman’s spectral method. The code was applied to a wide range of real networks and the performances of the algorithms are evaluated.


Sign in / Sign up

Export Citation Format

Share Document