structural metrics
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 35)

H-INDEX

11
(FIVE YEARS 3)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 112
Author(s):  
Humaira Enayetullah ◽  
Laura Chasmer ◽  
Christopher Hopkinson ◽  
Dan Thompson ◽  
Danielle Cobbaert

Wildland fires and anthropogenic disturbances can cause changes in vegetation species composition and structure in boreal peatlands. These could potentially alter regeneration trajectories following severe fire or through cumulative impacts of climate-mediated drying, fire, and/or anthropogenic disturbance. We used lidar-derived point cloud metrics, and site-specific locational attributes to assess trajectories of post-disturbance vegetation regeneration in boreal peatlands south of Fort McMurray, Alberta, Canada using a space-for-time-chronosequence. The objectives were to (a) develop methods to identify conifer trees vs. deciduous shrubs and trees using multi-spectral lidar data, (b) quantify the proportional coverage of shrubs and trees to determine environmental conditions driving shrub regeneration, and (c) determine the spatial variations in shrub and tree heights as an indicator of cumulative growth since the fire. The results show that the use of lidar-derived structural metrics predicted areas of deciduous shrub establishment (92% accuracy) and classification of deciduous and conifer trees (71% accuracy). Burned bogs and fens were more prone to shrub regeneration up to and including 38 years after the fire. The transition from deciduous to conifer trees occurred approximately 30 years post-fire. These results improve the understanding of environmental conditions that are sensitive to disturbance and impacts of disturbance on northern peatlands within a changing climate.


2022 ◽  
pp. 399-411
Author(s):  
Arshpreet Kaur Sidhu ◽  
Sumeet Kaur Sehra

Testing of software is broadly divided into three types i.e., code based, model based and specification based. To find faults at early stage, model based testing can be used in which testing can be started from design phase. Furthermore, in this chapter, to generate new test cases and to ensure the quality of changed software, regression testing is used. Early detection of faults will not only reduce the cost, time and effort of developers but also will help finding risks. We are using structural metrics to check the effect of changes made to software. Finally, the authors suggest identifying metrics and analyze the results using NDepend simulator. If results show deviation from standards then again perform regression testing to improve the quality of software.


2021 ◽  
Author(s):  
Jürgen Niedballa ◽  
Jan Axtner ◽  
Timm Fabian Döbert ◽  
Andrew Tilker ◽  
An Nguyen ◽  
...  

Convolutional neural networks (CNNs) and deep learning are powerful and robust tools for ecological applications. CNNs can perform very well in various tasks, especially for visual tasks and image data. Image segmentation (the classification of all pixels in images) is one such task and can for example be used to assess forest vertical and horizontal structure. While such methods have been suggested, widespread adoption in ecological research has been slow, likely due to technical difficulties in implementation of CNNs and lack of toolboxes for ecologists. Here, we present R package imageseg which implements a workflow for general-purpose image segmentation using CNNs and the U-Net architecture in R. The workflow covers data (pre)processing, model training, and predictions. We illustrate the utility of the package with two models for forest structural metrics: tree canopy density and understory vegetation density. We trained the models using large and diverse training data sets from a variety of forest types and biomes, consisting of 3288 canopy images (both canopy cover and hemispherical canopy closure photographs) and 1468 understory vegetation images. Overall classification accuracy of the models was high with a Dice score of 0.91 for the canopy model and 0.89 for the understory vegetation model (assessed with 821 and 367 images, respectively), indicating robustness to variation in input images and good generalization strength across forest types and biomes. The package and its workflow allow simple yet powerful assessments of forest structural metrics using pre-trained models. Furthermore, the package facilitates custom image segmentation with multiple classes and based on color or grayscale images, e.g. in cell biology or for medical images. Our package is free, open source, and available from CRAN. It will enable easier and faster implementation of deep learning-based image segmentation within R for ecological applications and beyond.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carey W. King

AbstractThis paper explains how the Human and Resources with MONEY (HARMONEY) economic growth model exhibits realistic dynamic interdependencies relating resources consumption, growth, and structural change. We explore dynamics of three major structural metrics of an economy. First, we show that an economic transition to relative decoupling of gross domestic product (GDP) from resource consumption is an expected pattern that occurs because of physical limits to growth, not a response to avoid physical limits. While increasing operational resource efficiency does increase the level of relative decoupling, so does a change in pricing from one based on full costs to one based only on marginal costs that neglect depreciation and interest payments. Marginal cost pricing leads to higher debt ratios and a perception of higher levels of relative resource decoupling. Second, if assuming full labor bargaining power for wages, when a previously-growing economy reaches peak resource extraction and GDP, wages remain high but profits and debt decline to zero. By removing bargaining power, profits can remain positive at the expense of declining wages. Third, the internal structure of HARMONEY evolves in the same way the post-World War II U.S. economy. This is measured as the distribution of intermediate transactions within the input-output tables of both the model and U.S. economy.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yiwen Zhong ◽  
Kun Song ◽  
ShengKai Lv ◽  
Peng He

Cross-project defect prediction (CPDP) is a mainstream method estimating the most defect-prone components of software with limited historical data. Several studies investigate how software metrics are used and how modeling techniques influence prediction performance. However, the software’s metrics diversity impact on the predictor remains unclear. Thus, this paper aims to assess the impact of various metric sets on CPDP and investigate the feasibility of CPDP with hybrid metrics. Based on four software metrics types, we investigate the impact of various metric sets on CPDP in terms of F-measure and statistical methods. Then, we validate the dominant performance of CPDP with hybrid metrics. Finally, we further verify the CPDP-OSS feasibility built with three types of metrics (orient-object, semantic, and structural metrics) and challenge them against two current models. The experimental results suggest that the impact of different metric sets on the performance of CPDP is significantly distinct, with semantic and structural metrics performing better. Additionally, trials indicate that it is helpful for CPDP to increase the software’s metrics diversity appropriately, as the CPDP-OSS improvement is up to 53.8%. Finally, compared with two baseline methods, TCA+ and TDSelector, the optimized CPDP model is viable in practice, and the improvement rate is up to 50.6% and 25.7%, respectively.


2021 ◽  
Vol 13 (23) ◽  
pp. 4794
Author(s):  
Nicolò Camarretta ◽  
Martin Ehbrecht ◽  
Dominik Seidel ◽  
Arne Wenzel ◽  
Mohd. Zuhdi ◽  
...  

Many Indonesian forests have been cleared and replaced by fast-growing cash crops (e.g., oil palm and rubber plantations), altering the vegetation structure of entire regions. Complex vegetation structure provides habitat niches to a large number of native species. Airborne laser scanning (ALS) can provide detailed three-dimensional information on vegetation structure. Here, we investigate the potential of ALS metrics to highlight differences across a gradient of land-use management intensities in Sumatra, Indonesia. We focused on tropical rainforests, jungle rubber, rubber plantations, oil palm plantations and transitional lands. Twenty-two ALS metrics were extracted from 183 plots. Analysis included a principal component analysis (PCA), analysis of variance (ANOVAs) and random forest (RF) characterization of the land use/land cover (LULC). Results from the PCA indicated that a greater number of canopy gaps are associated with oil palm plantations, while a taller stand height and higher vegetation structural metrics were linked with rainforest and jungle rubber. A clear separation in metrics performance between forest (including rainforest and jungle rubber) and oil palm was evident from the metrics pairwise comparison, with rubber plantations and transitional land behaving similar to forests (rainforest and jungle rubber) and oil palm plantations, according to different metrics. Lastly, two RF models were carried out: one using all five land uses (5LU), and one using four, merging jungle rubber with rainforest (4LU). The 5LU model resulted in a lower overall accuracy (51.1%) due to mismatches between jungle rubber and forest, while the 4LU model resulted in a higher accuracy (72.2%). Our results show the potential of ALS metrics to characterize different LULCs, which can be used to track changes in land use and their effect on ecosystem functioning, biodiversity and climate.


2021 ◽  
Vol 13 (23) ◽  
pp. 4763
Author(s):  
Joseph St. Peter ◽  
Jason Drake ◽  
Paul Medley ◽  
Victor Ibeanusi

Lidar data is increasingly available over large spatial extents and can also be combined with satellite imagery to provide detailed vegetation structural metrics. To fully realize the benefits of lidar data, practical and scalable processing workflows are needed. In this study, we used the lidR R software package, a custom forest metrics function in R, and a distributed cloud computing environment to process 11 TB of airborne lidar data covering ~22,900 km2 into 28 height, cover, and density metrics. We combined these lidar outputs with field plot data to model basal area, trees per acre, and quadratic mean diameter. We compared lidar-only models with models informed by spectral imagery only, and lidar and spectral imagery together. We found that lidar models outperformed spectral imagery models for all three metrics, and combination models performed slightly better than lidar models in two of the three metrics. One lidar variable, the relative density of low midstory canopy, was selected in all lidar and combination models, demonstrating the importance of midstory forest structure in the study area. In general, this open-source lidar-processing workflow provides a practical, scalable option for estimating structure over large, forested landscapes. The methodology and systems used for this study offered us the capability to process large quantities of lidar data into useful forest structure metrics in compressed timeframes.


2021 ◽  
Vol 13 (20) ◽  
pp. 4188
Author(s):  
Micah Russell ◽  
Jan U. H. Eitel ◽  
Timothy E. Link ◽  
Carlos A. Silva

Forest canopies exert significant controls over the spatial distribution of snow cover. Canopy snow interception efficiency is controlled by intrinsic processes (e.g., canopy structure), extrinsic processes (e.g., meteorological conditions), and the interaction of intrinsic-extrinsic factors (i.e., air temperature and branch stiffness). In hydrological models, intrinsic processes governing snow interception are typically represented by two-dimensional metrics like the leaf area index (LAI). To improve snow interception estimates and their scalability, new approaches are needed for better characterizing the three-dimensional distribution of canopy elements. Airborne laser scanning (ALS) provides a potential means of achieving this, with recent research focused on using ALS-derived metrics that describe forest spacing to predict interception storage. A wide range of canopy structural metrics that describe individual trees can also be extracted from ALS, although relatively little is known about which of them, and in what combination, best describes intrinsic canopy properties known to affect snow interception. The overarching goal of this study was to identify important ALS-derived canopy structural metrics that could help to further improve our ability to characterize intrinsic factors affecting snow interception. Specifically, we sought to determine how much variance in canopy intercepted snow volume can be explained by ALS-derived crown metrics, and what suite of existing and novel crown metrics most strongly affects canopy intercepted snow volume. To achieve this, we first used terrestrial laser scanning (TLS) to quantify snow interception on 14 trees. We then used these snow interception measurements to fit a random forest model with ALS-derived crown metrics as predictors. Next, we bootstrapped 1000 calculations of variable importance (percent increase in mean squared error when a given explanatory variable is removed), keeping nine canopy metrics for the final model that exceeded a variable importance threshold of 0.2. ALS-derived canopy metrics describing intrinsic tree structure explained approximately two-thirds of the snow interception variability (R2 ≥ 0.65, RMSE ≤ 0.52 m3, relative RMSE ≤ 48%) in our study when extrinsic factors were kept as constant as possible. For comparison, a generalized linear mixed-effects model predicting snow interception volume from LAI alone had a marginal R2 = 0.01. The three most important predictor variables were canopy length, whole-tree volume, and unobstructed returns (a novel metric). These results suggest that a suite of intrinsic variables may be used to map interception potential across larger areas and provide an improvement to interception estimates based on LAI.


2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel F. Ramalho ◽  
Ugo M. Diniz ◽  
Ludmilla M. S. Aguiar

Increasing anthropization is detrimental to the natural environment and the quality of life, affecting populations, communities, and the relationships between organisms. One of the most unique relationships in the animal world is parasitism, which often involves tightly specialized interactions between pairs of species. Bat flies, for example, are obligate ectoparasites represented by two highly adapted dipteran families that usually parasite a single bat species or genus. Recent studies have shown that bat flies could carry pathogens such as bacteria and viruses, transmitting them among bat individuals in a colony. Because host roost characteristics can influence bat-fly parasitism, we aimed to assess whether the ecological networks between parasites and their host bats are influenced by the degree of habitat anthropization. Our hypothesis was that bat-fly interaction networks would be less specialized and more nested in highly anthropized sites. We collected bat fly individuals from bats captured at 21 sampling sites located in the Federal District of Brazil and quantified the amount of natural and anthropized area within a 3-km buffer from the sampling site. Areas consisting of agriculture, construction, mining, roads, or any man-made structure were considered anthropized. Sites presented different degrees of anthropization, with areas ranging from 100% anthropized to areas retaining full natural cover. We built bat-bat fly networks for each of the sites and excluded those with less than 0.7% of sampling completeness. We calculated key weighted structural metrics for each network, such as nestedness, specialization, and modularity. The effect of the reduction in natural cover on structural metrics was assessed through GLMMs, controlling for network size and ectoparasite diversity. Nestedness increased with the amount of anthropization, while specialization and modularity did not change and were overall high in all networks. This result suggests that anthropization may influence the assembly of bat-bat fly networks, leading to the emergence of a hierarchical assembly of interactions as parasites become less specialized and interact with a wider variety of hosts. Less specialized relationships could influence parasite fitness or even increase the likelihood of transmitting pathogens between populations of different bat species.


Sign in / Sign up

Export Citation Format

Share Document