Mismatched source transition probability matrix for adaptive MAP decoding in MPEG-4 imagery wireless transmission systems

Author(s):  
Srijidtra Mahapakulchai ◽  
Chalie Charoenlarpnopparut ◽  
Siriwat Hasajitto
1969 ◽  
Vol 6 (03) ◽  
pp. 478-492 ◽  
Author(s):  
William E. Wilkinson

Consider a discrete time Markov chain {Zn } whose state space is the non-negative integers and whose transition probability matrix ║Pij ║ possesses the representation where {Pr }, r = 1,2,…, is a finite or denumerably infinite sequence of non-negative real numbers satisfying , and , is a corresponding sequence of probability generating functions. It is assumed that Z 0 = k, a finite positive integer.


2021 ◽  
pp. 107754632198920
Author(s):  
Zeinab Fallah ◽  
Mahdi Baradarannia ◽  
Hamed Kharrati ◽  
Farzad Hashemzadeh

This study considers the designing of the H ∞ sliding mode controller for a singular Markovian jump system described by discrete-time state-space realization. The system under investigation is subject to both matched and mismatched external disturbances, and the transition probability matrix of the underlying Markov chain is considered to be partly available. A new sufficient condition is developed in terms of linear matrix inequalities to determine the mode-dependent parameter of the proposed quasi-sliding surface such that the stochastic admissibility with a prescribed H ∞ performance of the sliding mode dynamics is guaranteed. Furthermore, the sliding mode controller is designed to assure that the state trajectories of the system will be driven onto the quasi-sliding surface and remain in there afterward. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design algorithms.


2016 ◽  
Vol 8 (5) ◽  
pp. 1-8 ◽  
Author(s):  
Shi Jia ◽  
Xianbin Yu ◽  
Hao Hu ◽  
Jinlong Yu ◽  
Toshio Morioka ◽  
...  

Author(s):  
Jin Zhu ◽  
Kai Xia ◽  
Geir E Dullerud

Abstract This paper investigates the quadratic optimal control problem for constrained Markov jump linear systems with incomplete mode transition probability matrix (MTPM). Considering original system mode is not accessible, observed mode is utilized for asynchronous controller design where mode observation conditional probability matrix (MOCPM), which characterizes the emission between original modes and observed modes is assumed to be partially known. An LMI optimization problem is formulated for such constrained hidden Markov jump linear systems with incomplete MTPM and MOCPM. Based on this, a feasible state-feedback controller can be designed with the application of free-connection weighting matrix method. The desired controller, dependent on observed mode, is an asynchronous one which can minimize the upper bound of quadratic cost and satisfy restrictions on system states and control variables. Furthermore, clustering observation where observed modes recast into several clusters, is explored for simplifying the computational complexity. Numerical examples are provided to illustrate the validity.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Thai Duong ◽  
Duong Nguyen-Huu ◽  
Thinh Nguyen

Markov decision process (MDP) is a well-known framework for devising the optimal decision-making strategies under uncertainty. Typically, the decision maker assumes a stationary environment which is characterized by a time-invariant transition probability matrix. However, in many real-world scenarios, this assumption is not justified, thus the optimal strategy might not provide the expected performance. In this paper, we study the performance of the classic value iteration algorithm for solving an MDP problem under nonstationary environments. Specifically, the nonstationary environment is modeled as a sequence of time-variant transition probability matrices governed by an adiabatic evolution inspired from quantum mechanics. We characterize the performance of the value iteration algorithm subject to the rate of change of the underlying environment. The performance is measured in terms of the convergence rate to the optimal average reward. We show two examples of queuing systems that make use of our analysis framework.


Proceedings ◽  
2018 ◽  
Vol 2 (18) ◽  
pp. 1163
Author(s):  
Jose Balsa ◽  
Tomás Domínguez-Bolano ◽  
Óscar Fresnedo ◽  
José A. García-Naya ◽  
Luis Castedo

Evaluation and comparison of analog and digital wireless transmission systems.


Sign in / Sign up

Export Citation Format

Share Document