Ameliorating global weather with fusion energy targets for deeply penetrating beams and improved inertial fusion power plants

Author(s):  
J.W.-K. Mark
Author(s):  
M. E. Koepke

Managing the IFE pathway to fusion electricity will involve management of commericalization scope, schedule, cost and risk. The technology pathway to economical fusion power comprises the commercialization scope. Industry assumes commercialization risk in fielding its own pre-pilot plant research programme for this compact-fusion pathway without the benefit of a federally coordinated IFE research and development programme. The cost of commercializing the mass-production of inexpensive targets and insisting on high reliability, availability, maintainability and inspectability has a major impact on the economics of commercializing fusion power plants. Schedule vulnerability for inertial fusion energy arises from the sensitivity of time-based roadmap stages to uncertainties in the pace of scientific understanding and technology development, as well as to unexpected and inexplicable changes of the budgeting process. Rather than rely on a time-based roadmap, a milestone-based roadmap is maximally appropriate, especially for industry and investors who are particularly well-suited to taking the risks associated with reaching the target milestones provided by the government. Milestones must be identified and optimally sequenced and the necessary resources must be delineated. Progress on the above factors, since the outcomes of recent U.S., U.K. and EUROfusion roadmapping exercises were released, are reported. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.


Author(s):  
Hartmut Zohm

Figures of merit for future tokamak fusion power plants (FPPs) are presented. It is argued that extrapolation from present-day experiments to proposed FPPs must follow a consistent development path, demonstrating the largest required leaps in intermediate devices to allow safe extrapolation to an FPP. This concerns both plasma physics and technology. At constant plasma parameters, the figures of merit depend on both major radius R and magnetic field B . We propose to use the term ‘size’ for a combination of R and B to avoid ambiguities in scaling arguments. Two routes to FPPs are discussed: the more conventional one increasing R , based on the assumption that B is limited by present technology; and an alternative approach assuming the availability of new technology for superconducting coils, allowing higher B . It is shown that the latter will lead to more compact devices, and, assuming a criterion based on divertor impurity concentration, is in addition more favourable concerning the exhaust problem. However, in order to obtain attractive steady-state tokamak FPPs, the required plasma parameters still require considerable progress with respect to present experiments. A credible strategy to arrive at these must hence be shown for both paths. In addition, the high-field path needs a demonstration of the critical technology items early on. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.


2001 ◽  
Vol 41 (5) ◽  
pp. 527-535 ◽  
Author(s):  
D.T Goodin ◽  
N.B Alexander ◽  
C.R Gibson ◽  
A Nobile ◽  
R.W Petzoldt ◽  
...  

Author(s):  
Nicholas Hawker

A simple model for the levelized cost of electricity (LCOE) of an inertial fusion power plant is developed. The model has 14 parameters. These have been designed to be technology agnostic, such that the model may be applied broadly to all variants of inertial fusion. It is also designed to allow easy use of proxies from existing technology. The variables related most intimately to the physics challenges of inertial fusion, such as gain and target cost, are treated as parameters such that requirements can be found without bringing complex physics into the model. A Monte Carlo approach is taken to explore the parameter space. The most important conclusion is that a combination of high gain (greater than 500) and high fusion energy yield per shot (greater than 5 GJ) together appear to unlock more cost competitive designs than those in the existing literature. Designs with LCOE as low as $25/MWh are found with optimistic but not obviously unrealistic inputs. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 1)'.


Sign in / Sign up

Export Citation Format

Share Document