superconducting coils
Recently Published Documents


TOTAL DOCUMENTS

446
(FIVE YEARS 41)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Justin J. Scheidler ◽  
Thomas Tallerico ◽  
William Torres ◽  
Wesley Miller

Author(s):  
Samuele Mariotto ◽  
Massimo Sorbi

Abstract The performances of superconducting magnets for particle accelerators are limited by instabilities or disturbances which lead to the transition of the superconducting material to the normal resistive state and the activation of the quench protection system to prevent damage to the magnet. To locate the position of the state transition, voltage taps or quench antenna are the most commonly used technologies for their reliability and accuracy. However, during the production phase of a magnet, the number of voltage taps is commonly reduced to simplify the construction process, and quench antennae are generally used only for dipoles or quadrupoles to limit the antenna design complexity. To increase the accuracy in the reconstruction of the quench event position, a novel method, suitable for magnets with independent superconducting coils and quench protected without the use of quench heaters is proposed in this paper. This method, based on standard magnetic measurement techniques for field harmonic analysis, can locate the position of the superconductor transition inside the magnet after the quench event when the magnet has been discharged. Analyzing the not allowed harmonics produced in the field quality at zero current, the position of the quenched coils can be retrieved for any magnet orders without increasing the complexity of the dedicated measurement technique.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2789
Author(s):  
Wei Wu ◽  
Yusong Gao ◽  
Zhijian Jin

Non-insulation high-temperature superconducting coils provide a much lower risk of burnout in fault/abnormal conditions, such as hot-spot quench and overcurrent. This study employs an equivalent circuit grid model, coupled with magnetic field calculation and the E–J power law of superconductors, to deeply and systematically investigate the overcurrent charging process in a double-pancake non-insulation coil. An evident saturation of the magnetic field in the axial direction of the coil was observed and verified by experiments. Experimentally, the entire process, including the behavior of the magnetic field, was consistent with the numerical results. Based on the verified model, two main points were addressed: (1) Transient current distribution inside the coil during overcurrent charging was studied. Potential quenching risks were found to be at the innermost and outermost turn near the electrodes, as well as the pancake-to-pancake connection part. (2) Magnetic field saturation, which is a unique phenomenon in non-insulation superconducting coils during overcurrent charging, was studied in detail and first quantitatively defined by a new concept “converged load factor”. Its relationship with turn-to-turn resistivity was revealed.


2021 ◽  
Vol 225 ◽  
pp. 109262
Author(s):  
Jun Min Kim ◽  
Seunghyun Song ◽  
Young Jin Hwang ◽  
Jae Young Jang ◽  
Sanggil Lee ◽  
...  

2021 ◽  
Vol 1975 (1) ◽  
pp. 012020
Author(s):  
S Pyon ◽  
H Mori ◽  
T Tamegai ◽  
H Kajitani ◽  
N Koizumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document