Achieving a high Short Circuit Current Density of 40.9 mA/cm² for Two-Side Contacted Silicon Heterojunction Solar Cells by using SiC-based Transparent Passivating Contacts

Author(s):  
Alexander Eberst ◽  
Alexandr Zamchiy ◽  
Kaifu Qiu ◽  
Andreas Lambertz ◽  
Weiyuan Duan ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hyomin Park ◽  
Sung Ju Tark ◽  
Chan Seok Kim ◽  
Sungeun Park ◽  
Young Do Kim ◽  
...  

To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P) gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Feng-Hao Hsu ◽  
Na-Fu Wang ◽  
Yu-Zen Tsai ◽  
Ming-Hao Chien ◽  
Mau-Phon Houng

This study confirms that the surface texturation of window layer (Al-Y codoped ZnO) etched by diluted HCl effectively increases conversion efficiency of p-Ni1−xO:Li/n-Si heterojunction solar cells. The results show that the short circuit current density (Jsc) of cell etched at 10 s increases about 8.5% compared to unetched cell, which also corresponds to the increase of efficient photoelectric conversion in NIR region as shown in external quantum efficiency spectra. It is attributed to the increase of light transmittance of AZOY thin films in the NIR region and the effective light path of the NIR wavelength, which results in increasing of light absorption in the base layer.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Ching-Wen Chang ◽  
Paritosh V. Wadekar ◽  
Hui-Chun Huang ◽  
Quark Yung-Sung Chen ◽  
Yuh-Renn Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document