light transmittance
Recently Published Documents


TOTAL DOCUMENTS

884
(FIVE YEARS 308)

H-INDEX

42
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 648
Author(s):  
Han Yan ◽  
Xiong Xu ◽  
Peng Li ◽  
Peijie He ◽  
Qing Peng ◽  
...  

Ultrathin silver films with low loss in the visible and near-infrared spectrum range have been widely used in the fields of metamaterials and optoelectronics. In this study, Al-doped silver films were prepared by the magnetron sputtering method and were characterized by surface morphology, electrical conductivity, and light transmittance analyses. Molecular dynamics simulations and first-principles density functional theory calculations were applied to study the surface morphologies and migration pathway for the formation mechanisms in Al-doped silver films. The results indicate that the migration barrier of silver on a pristine silver surface is commonly lower than that of an Al-doped surface, revealing that the aluminum atoms in the doping site decrease the surface mobility and are conducive to the formation of small islands of silver. When the islands are dense, they coalesce into a single layer, leading to a smoother surface. This might be the reason for the observably lower 3D growth mode of silver on an Al-doped silver surface. Our results with electronic structure insights on the mechanism of the Al dopants on surface morphologies might benefit the quality control of the silver thin films.


2022 ◽  
Author(s):  
Chuan Sun ◽  
Guanhui Li ◽  
Jingyu Wang ◽  
Zhiqiang Fang ◽  
Famei Qin ◽  
...  

Abstract To obtain high performance of nanocomposite films made of cellulose nanofibrils (CNFs) and montmorillonites (MMTs), highly ordered nanostructures and abundant interfacial interactions are of extreme importance, especially for CNF film with high MMT content. Here, we tend to unveil the influence of exfoliation degree of MMTs and their interfacial interactions with CNFs on the properties of ensuing nanocomposite films. Monolayer MMTs prefer to form highly ordered nanostructure during water evaporation induced self-assembly. The obtained nanocomposite film with 30 wt% monolayer MMTs exhibits a tensile strength of 132 MPa, a total light transmittance of 90.2% (550nm), and water vapor transmission rate (WVTR) of 41.5 g•mm/m2•day, better than the film made of original bulk MMTs and CNFs (30 MPa strength, 60% transparency, and 78.7 g•mm/m2•day WVTR). Moreover, the physical properties (153 MPa strength and 20.9 g•mm/m2•day WVTR) of nanocomposite film can be further enhanced by constructing ionic interactions between the monolayer MMT and CNF using 0.5 wt% cationic polyethylenimine (PEI). However, as the amount of PEI continues to increase, its performance will be deteriorated dramatically because of the disordered orientation of monolayer MMTs. This work could provide an insight into the fabrication of high performance MMT/CNF nanocomposite film for advanced applications.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 406
Author(s):  
May Tran Thi ◽  
Seokhun Kwon ◽  
Hyunil Kang ◽  
Jung-Hyun Kim ◽  
Yong-Kyu Yoon ◽  
...  

This research is conducted in order to investigate the structural and electrical characteristics of carbon nanowalls (CNWs) according to the sputtering time of interlayers. The thin films were deposited through RF magnetron sputtering with a 4-inch target (Ni and Ti) on the glass substrates, and the growth times of the deposition were 5, 10, and 30 min. Then, a microwave plasma-enhanced chemical vapor deposition (PECVD) system was used to grow CNWs on the interlayer-coated glass substrates by using a mixture of H2 and CH4 gases. The FE-SEM analysis of the cross-sectional and planar images confirmed that the thickness of interlayers linearly increased according to the deposition time. Furthermore, CNWs grown on the Ni interlayer were taller and denser than those grown on the Ti interlayer. Hall measurement applied to measure sheet resistance and conductivity confirmed that the electrical efficiency improved significantly as the Ni or Ti interlayers were used. Additionally, UV-Vis spectroscopy was also used to analyze the variations in light transmittance; CNWs synthesized on Ni-coated glass have lower average transmittance than those synthesized on Ti-coated glass. Based on this experiment, it was found that the direct growth of CNW was possible on the metal layer and the CNWs synthesized on Ni interlayers showed outstanding structural and electrical characterizations than the remaining interlayer type.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 257
Author(s):  
Wen He ◽  
Rui Wang ◽  
Feiyu Guo ◽  
Jizhou Cao ◽  
Zhihao Guo ◽  
...  

There has been growing interest in transparent conductive substrates due to the prevailing flexible electron devices and the need for sustainable resources. In this study, we demonstrated a transparent fast-growing poplar veneers prepared by acetylated modification, followed by the infiltration of epoxy resin. The work mainly focused on the effect of acetylation treatment using a green catalyst of 4-Dimethylpyridine on the interface of the bulk fast-growing poplar veneer, and the result indicated that the interface hydrophobicity was greatly enhanced due to the higher substitute of acetyl groups; therefore, the interface compatibility between the cell wall and epoxy resin was improved. The obtained transparent fast-growing poplar veneers, hereafter referred to as TADPV, displayed a superior optical performance and flexibility, in which the light transmittance and haze were 90% and 70% at a wavelength of 550 nm, respectively, and the bending radius and bending angle parallel to grain of TADPV were 2 mm and 130°, respectively. Moreover, the tensile strength and tensile modulus of the TADPV were around 102 MPa and 198 MPa, respectively, which is significantly better than those of the plastic substrates used in flexible electron devices. At the same time, the thermal conductivity tests indicated that TADPV has a low coefficient of thermal conductivity of 0.34 Wm−1 K−1, which can completely meet the needs of transparent conductive substrates. Therefore, the obtained TADPV can be used as a candidate for a flexible transparent substrate of electron devices.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Yifan Song ◽  
Ge Yan ◽  
Guangfu Zhang

In the process of subtropical forest succession, it has long been recognized that population decline of Masson pines in coniferous-broadleaf mixed forest is caused by shading from broadleaf trees. However, little is known about the mechanism underlying the interaction between them. Here, we first chose two sets of Masson pine plots approximately aged 60 years in subtropical mountainous areas in eastern China (i.e., pure coniferous forest vs. coniferous-broadleaf mixed forest). Then, we measured and compared tree height, diameter at breast height, first branch height (FBH), live crown ratio (LCR) of Masson pines between the two sets of plots, and also determined the difference in growth performance of Masson pines relative to their neighboring broadleaf trees in the mixed forest stand. Compared with plots in pine forests, Masson pines in mixed plots had lower tree height and crown breadth, higher FBH, lower LCR, and leaf area. Furthermore, the difference of mean FBH between reference trees (Masson pines) and their neighboring trees (i.e., broadleaf trees) in mixed forest plots was greater than that in pine forest plots, and the ratio of LCR between Masson pines and their neighbors (0.46) in mixed forest was significantly smaller than in pine forest (1.05), indicating that those broadleaf trees around Masson pines probably affected their growth. The mean distance between Masson pines and neighboring trees (1.59 m) in mixed forest plots was significantly shorter than in pine forest plots (2.77 m) (p < 0.01), suggesting that strong competition may occur between reference trees and their neighbors. There was a significant difference in the ratio of crown volume between reference tree Masson pine and its neighboring trees in mixed forests (p < 0.01), indicating that the ratio of biomass synthesis to consumption of pines was much lower than their nearby broadleaf trees in mixed forest. Our results have demonstrated for the first time that Masson pines’ population decline is affected by shade-tolerant broadleaf late-successional species, which can be primarily attributed to the distinctive light transmittance of dominant species nearby (pure pine vs. mixed forest). This study provides a new perspective for future studies on the mechanism of forest succession.


Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 75
Author(s):  
Satheesh B. Haralur ◽  
Turki Abdullah Alasmari ◽  
Mohammed Hussin Alasmari ◽  
Hafiz Mohammed Hakami

Background and Objectives: One requirement for the cemented post is the light transmittance on its entire length up to the deepest portion of a root canal to ensure the complete polymerization of resin cement. This study aimed to determine the light transmission ability in different aesthetic posts at different depths and its effect on the push-out bond strength and microhardness of luting cement at the corresponding interface. Materials and Methods: Twenty endodontic posts from glass fiber posts (GFP), zirconia ceramic posts (ZCP), and highly translucent zirconium oxide posts (HTZP) were sequentially sectioned into 12.8 and 4 mm lengths after recording the light intensity using a dental radiometer. Sixty single rooted premolar teeth root canals were treated and implanted vertically in a resin block. The post space was prepared and cemented with GFP, ZCP, and HTZP posts with twenty samples each. The root portion of teeth samples were sectioned into cervical, middle, and apical portion. A universal testing machine was utilized for the push-out bond strength test for the first ten samples from each group. The remaining ten samples from each group were used for the microhardness test using a micro-indenter instrument. The data were statistically analyzed using one-way Analysis of variance and Tukey HSD tests at p < 0.05. Results: The GFP endodontic postpresented with significant highest light translucency compared to HTZP, which was significantly higher than ZCP. GFP posts showed significantly higher bond strength per unit area compared to ZCP at analogous cross sections. The hardness of luting cement was also significantly higher amongst all tested endodontic posts. Conclusions: GFP high light translucency enhanced the curing of the luting resin cement that resulted in harder cement and a stronger bond supported by hardness and push-out tests. These findings suggest that GFP is preferred to be used with light-cured luting cements for restoration of endodontically treated teeth.


2022 ◽  
Vol 58 (4) ◽  
pp. 19-27
Author(s):  
Peng Jian Xiang ◽  
Zhu Xiao Rao ◽  
Sun Shi Dong ◽  
Zhu He Ping

The effect of bamboo fiber content on mechanical properties, moisture permeability and light transmittance of composite membrane was studied. The results show that the tensile strength of the composite film is increased by 30%, and the mechanical properties of PVA film are improved obviously with the addition of bamboo cellulose, which can be used as a good reinforcing material of PVA matrix. Bamboo cellulose composite film is a kind of transparent material because of its high light transmittance.


Author(s):  
Mattia Galli ◽  
Francesco Franchi ◽  
Fabiana Rollini ◽  
Latonya Been ◽  
Patrick Abou Jaoude ◽  
...  

Aim: Inhibition of thrombin-mediated signaling processes using a vascular dose of rivaroxaban in adjunct to antiplatelet therapy, known as dual-pathway inhibition (DPI), reduces atherothrombotic events in patients with stable atherosclerotic disease. However, there are limited data on the pharmacodynamic (PD) effects of this strategy. Methods and Results: This investigation was conducted in selected cohorts of patients (n=40) with stable atherosclerotic disease enrolled within a larger prospective PD study who were treated with either aspirin plus clopidogrel (DAPT), aspirin plus rivaroxaban 2.5 mg/bid (DPI) or DAPT plus rivaroxaban 2.5 mg/bid. Multiple PD assays assessing of markers of thrombosis were used. PD endpoints included platelet-mediated global thrombogenicity measured by light transmittance aggregometry (LTA) following stimuli with CATF [collagen‐related peptide +adenosine diphosphate (ADP) +tissue factor (TF)], markers of P2Y12 reactivity, markers of platelet aggregation using LTA following several stimuli (arachidonic acid, ADP, collagen, TF, and TRAP), thrombin generation and thrombus formation. There was no difference in platelet-mediated global thrombogenicity between groups. Rivaroxaban significantly reduced thrombin generation and was associated with a trend towards reduced TF-induced platelet aggregation. Clopidogrel-based treatments reduced markers of P2Y12 signaling and TRAP‐induced platelet aggregation. There were no differences between groups on markers of cyclooxygenase‐1 mediated activity. Conclusions: Compared with DAPT, DPI does not result in any differences in platelet-mediated global thrombogenicity, but reduces thrombin generation. These PD observations support that modulating thrombin generation by means of factor Xa inhibition in adjunct to antiplatelet therapy provides effective antithrombotic effects, supporting the efficacy and safety findings of DPI observed in clinical


2022 ◽  
Vol 2160 (1) ◽  
pp. 012004
Author(s):  
Runmeng Qiao ◽  
Zhengping Zhong ◽  
Qiao Liu ◽  
Jialei Liu ◽  
Wenqing He

Abstract Calcium sulfate whisker (CSW) is a kind of fiber crystal material with high orientation structure. The major goal of this research is to study the changes of mechanical properties and light transmittance of PE greenhouse film with different proportions of CSW. The experimental results show that the mechanical properties and light transmittance of PE/CSW films are enhanced compared with the pure PE. For PE/2%CSW, it shows a 18.6% increase in tear strength, a 3.1% increase in luminous transmittance and 17.7% increase in haze. The PE/5%CSW demonstrates a 12.8% higher in tensile strength, a 20.5% higher in tear strength, a 23.9% lower in luminous transmittance and a 53.0% higher in haze. This article gives a new formula to strengthen the mechanical properties of PE greenhouse films and finds the direction for the research and development of astigmatic covering film.


2021 ◽  
Author(s):  
Guofeng Guo

Abstract Objective To analyze whether CYP2C19 gene and platelet testing guide ACS patients PCI benefit from postoperative dual antiplatelet escalation therapy. Methods Selecting ACS patients with 209 routine PCI surgery from January 2018 to January 2019 in Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University. Preoperative administration of aspirin 300mg and clopidogrel 600mg, and continued administration of clopidogrel 75mg/d and aspirin 100mg/d after operation. Genotype and light transmittance aggregation (LTA) was detected by gene chip 24 h after operation. According to genotype the remaining patients were divided into non loss of function (Non-LOF) alleles group Extensive-metabolisms (EMs) type, loss of function (LOF) alleles group as Intermediate metabolic (IMs) type and Poor-metabolisms (PMs) type. Define the maximum platelet aggregation rate (MPA)≥46% as hyperplatelet reactivity (HPR). The LOF group consisted of 23 patients who had both HPR and proclopidogrel and were upgraded to tigrillo for further treatment.The remaining patients without HPR who continued to be treated with clopidogrel comprised 90 patients in the LOF group without upgrade and 95 patients in the non-LOF group who continued to be treated with clopidogrel.Major adverse cardiovascular events (MACE) were recorded in the follow-up period of 1 year, and the incidence of MACE in the three groups was compared to determine whether gene and platelet detection could guide the benefit of dual anti-platelet upgrade therapy in ACS patients after PCI. Results There were 26 cases occurred during follow-up MACE, among which the incidence of unstable angina recurrence and overall MACE in the LOF allele-not-up group was the highest and significantly different compared with the Non-LOF allele group (P<0.05), there was no significant difference compared with the LOF allele-up group (0.05). while there was no significant difference between the Non-LOF allele and the LOF allele upgrading group (P>0.05). Conclusions Gene is an important factor in the difference of platelet reactivity and is associated with MACE. Upgraded treatments for high-risk patients screened for gene and platelet testing did not benefit.


Sign in / Sign up

Export Citation Format

Share Document