Fitting Markovian Arrival Processes by Incorporating Correlation into Phase Type Renewal Processes

Author(s):  
Falko Bause ◽  
Gabor Horvath
1979 ◽  
Vol 16 (4) ◽  
pp. 764-779 ◽  
Author(s):  
Marcel F. Neuts

We introduce a versatile class of point processes on the real line, which are closely related to finite-state Markov processes. Many relevant probability distributions, moment and correlation formulas are given in forms which are computationally tractable. Several point processes, such as renewal processes of phase type, Markov-modulated Poisson processes and certain semi-Markov point processes appear as particular cases. The treatment of a substantial number of existing probability models can be generalized in a systematic manner to arrival processes of the type discussed in this paper.Several qualitative features of point processes, such as certain types of fluctuations, grouping, interruptions and the inhibition of arrivals by bunch inputs can be modelled in a way which remains computationally tractable.


1979 ◽  
Vol 16 (04) ◽  
pp. 764-779 ◽  
Author(s):  
Marcel F. Neuts

We introduce a versatile class of point processes on the real line, which are closely related to finite-state Markov processes. Many relevant probability distributions, moment and correlation formulas are given in forms which are computationally tractable. Several point processes, such as renewal processes of phase type, Markov-modulated Poisson processes and certain semi-Markov point processes appear as particular cases. The treatment of a substantial number of existing probability models can be generalized in a systematic manner to arrival processes of the type discussed in this paper. Several qualitative features of point processes, such as certain types of fluctuations, grouping, interruptions and the inhibition of arrivals by bunch inputs can be modelled in a way which remains computationally tractable.


2015 ◽  
Vol 52 (3) ◽  
pp. 826-840 ◽  
Author(s):  
Fabrice Guillemin ◽  
Bruno Sericola

We study congestion periods in a finite fluid buffer when the net input rate depends upon a recurrent Markov process; congestion occurs when the buffer content is equal to the buffer capacity. Similarly to O'Reilly and Palmowski (2013), we consider the duration of congestion periods as well as the associated volume of lost information. While these quantities are characterized by their Laplace transforms in that paper, we presently derive their distributions in a typical stationary busy period of the buffer. Our goal is to compute the exact expression of the loss probability in the system, which is usually approximated by the probability that the occupancy of the infinite buffer is greater than the buffer capacity under consideration. Moreover, by using general results of the theory of Markovian arrival processes, we show that the duration of congestion and the volume of lost information have phase-type distributions.


2014 ◽  
Vol 24 (3) ◽  
pp. 453-470 ◽  
Author(s):  
András Meszáros ◽  
János Papp ◽  
Miklós Telek

Abstract Recent developments of matrix analytic methods make phase type distributions (PHs) and Markov Arrival Processes (MAPs) promising stochastic model candidates for capturing traffic trace behaviour and for efficient usage in queueing analysis. After introducing basics of these sets of stochastic models, the paper discusses the following subjects in detail: (i) PHs and MAPs have different representations. For efficient use of these models, sparse (defined by a minimal number of parameters) and unique representations of discrete time PHs and MAPs are needed, which are commonly referred to as canonical representations. The paper presents new results on the canonical representation of discrete PHs and MAPs. (ii) The canonical representation allows a direct mapping between experimental moments and the stochastic models, referred to as moment matching. Explicit procedures are provided for this mapping. (iii) Moment matching is not always the best way to model the behavior of traffic traces. Model fitting based on appropriately chosen distance measures might result in better performing stochastic models. We also demonstrate the efficiency of fitting procedures with experimental results


1999 ◽  
Vol 31 (2) ◽  
pp. 422-447 ◽  
Author(s):  
Søren Asmussen ◽  
Hanspeter Schmidli ◽  
Volker Schmidt

A well-known result on the distribution tail of the maximum of a random walk with heavy-tailed increments is extended to more general stochastic processes. Results are given in different settings, involving, for example, stationary increments and regeneration. Several examples and counterexamples illustrate that the conditions of the theorems can easily be verified in practice and are in part necessary. The examples include superimposed renewal processes, Markovian arrival processes, semi-Markov input and Cox processes with piecewise constant intensities.


2004 ◽  
Vol 41 (4) ◽  
pp. 1138-1144 ◽  
Author(s):  
K. Borovkov

We present several results refining and extending those of Neuts and Alfa on weak convergence of the pair-formation process when arrivals follow two independent Poisson processes. Our results are obtained using a different, more straightforward, and apparently simpler probabilistic approach. Firstly, we give a very short proof of the fact that the convergence of the pair-formation process to a Poisson process actually holds in total variation (with a bound for convergence rate). Secondly, we extend the result of the theorem to the case of multiple labels: there are d independent arrival Poisson processes, and we are looking at the epochs when d-tuples are formed. Thirdly, we extend the original (weak convergence) result to the case when arrivals follow independent renewal processes (this extension is also valid for the d-tuple formation).


1999 ◽  
Vol 31 (02) ◽  
pp. 422-447 ◽  
Author(s):  
Søren Asmussen ◽  
Hanspeter Schmidli ◽  
Volker Schmidt

A well-known result on the distribution tail of the maximum of a random walk with heavy-tailed increments is extended to more general stochastic processes. Results are given in different settings, involving, for example, stationary increments and regeneration. Several examples and counterexamples illustrate that the conditions of the theorems can easily be verified in practice and are in part necessary. The examples include superimposed renewal processes, Markovian arrival processes, semi-Markov input and Cox processes with piecewise constant intensities.


1986 ◽  
Vol 23 (4) ◽  
pp. 989-999 ◽  
Author(s):  
C. Courcoubetis ◽  
R. R. Weber

Objects of various integer sizes, o1, · ··, on, are to be packed together into bins of size N as they arrive at a service facility. The number of objects of size oi which arrive by time t is , where the components of are independent renewal processes, with At/t → λ as t → ∞. The empty space in those bins which are neither empty nor full at time t is called the wasted space and the system is declared stabilizable if for some finite B there exists a bin-packing algorithm whose use guarantees the expected wasted space is less than B for all t. We show that the system is stabilizable if the arrival processes are Poisson and λ lies in the interior of a certain convex polyhedral cone Λ. In this case there exists a bin-packing algorithm which stabilizes the system without needing to know λ. However, if λ lies on the boundary of Λ the wasted space grows as and if λ is exterior to Λ it grows as O(t); these conclusions hold even if objects may be repacked as often as desired.


2015 ◽  
Vol 52 (03) ◽  
pp. 826-840 ◽  
Author(s):  
Fabrice Guillemin ◽  
Bruno Sericola

We study congestion periods in a finite fluid buffer when the net input rate depends upon a recurrent Markov process; congestion occurs when the buffer content is equal to the buffer capacity. Similarly to O'Reilly and Palmowski (2013), we consider the duration of congestion periods as well as the associated volume of lost information. While these quantities are characterized by their Laplace transforms in that paper, we presently derive their distributions in a typical stationary busy period of the buffer. Our goal is to compute the exact expression of the loss probability in the system, which is usually approximated by the probability that the occupancy of the infinite buffer is greater than the buffer capacity under consideration. Moreover, by using general results of the theory of Markovian arrival processes, we show that the duration of congestion and the volume of lost information have phase-type distributions.


Sign in / Sign up

Export Citation Format

Share Document