Exploiting Various Word Embedding Models for Query Expansion in Microblog

Author(s):  
Shafayet Ahmed ◽  
Abu Nowshed Chy ◽  
Md Zia Ullah
Author(s):  
Nuhu Yusuf ◽  
Mohd Amin Mohd Yunus ◽  
Norfaradilla Wahid ◽  
Noorhaniza Wahid ◽  
Nazri Mohd Nawi ◽  
...  

2019 ◽  
Vol 5 (1) ◽  
pp. 47 ◽  
Author(s):  
Evan Tanuwijaya ◽  
Safri Adam ◽  
Mohammad Fatoni Anggris ◽  
Agus Zainal Arifin

Kata kunci merupakan hal terpenting dalam mencari sebuah informasi. Penggunaan kata kunci yang tepat menghasilkan informasi yang relevan. Saat penggunaannya sebagai query, pengguna menggunakan bahasa yang alami, sehingga terdapat kata di luar dokumen jawaban yang telah disiapkan oleh sistem. Sistem tidak dapat memproses bahasa alami secara langsung yang dimasukkan oleh pengguna, sehingga diperlukan proses untuk mengolah kata-kata tersebut dengan mengekspansi setiap kata yang dimasukkan pengguna yang dikenal dengan Query Expansion (QE). Metode QE pada penelitian ini menggunakan Word Embedding karena hasil dari Word Embedding dapat memberikan kata-kata yang sering muncul bersama dengan kata-kata dalam query. Hasil dari word embedding dipakai sebagai masukan pada pseudo relevance feedback untuk diperkaya berdasarkan dokumen jawaban yang telah ada. Metode QE diterapkan dan diuji coba pada aplikasi chatbot. Hasil dari uji coba metode QE yang diterapkan pada chatbot didapatkan nilai recall, precision, dan F-measure masing-masing 100%; 70% dan 82,35 %. Hasil tersebut meningkat 1,49% daripada chatbot tanpa menggunakan QE yang pernah dilakukan sebelumnya yang hanya meraih akurasi sebesar 68,51%. Berdasarkan hasil pengukuran tersebut, QE menggunakan word embedding dan pseudo relevance feedback pada chatbot dapat mengatasi query masukan dari pengguna yang ambigu dan alami, sehingga dapat memberikan jawaban yang relevan kepada pengguna.  Keywords are the most important words and phrases used to obtain relevant information on content. Although users make use of natural languages, keywords are processed as queries by the system due to its inability to process. The language directly entered by the user is known as query expansion (QE). The proposed QE in this research uses word embedding owing to its ability to provide words that often appear along with those in the query. The results are used as inputs to the pseudo relevance feedback to be enriched based on the existing documents. This method is also applied to the chatbot application and precision, and F-measure values of the results obtained were 100%, 70%, 82.35% respectively. The results are 1.49% better than chatbot without using QE with 68.51% accuracy. Based on the results of these measurements, QE using word embedding and pseudo which gave relevance feedback in chatbots can resolve ambiguous and natural user’s input queries thereby enabling the system retrieve relevant answers.


2019 ◽  
Vol 12 (5) ◽  
pp. 202-213
Author(s):  
Maryamah Maryamah ◽  
◽  
Agus Arifin ◽  
Riyanarto Sarno ◽  
Yasuhiko Morimoto ◽  
...  

2018 ◽  
Vol 45 (4) ◽  
pp. 429-442 ◽  
Author(s):  
Abdelkader El Mahdaouy ◽  
Saïd Ouatik El Alaoui ◽  
Eric Gaussier

Pseudo-relevance feedback (PRF) is a very effective query expansion approach, which reformulates queries by selecting expansion terms from top k pseudo-relevant documents. Although standard PRF models have been proven effective to deal with vocabulary mismatch between users’ queries and relevant documents, expansion terms are selected without considering their similarity to the original query terms. In this article, we propose a method to incorporate word embedding (WE) similarity into PRF models for Arabic information retrieval (IR). The main idea is to select expansion terms using their distribution in the set of top pseudo-relevant documents along with their similarity to the original query terms. Experiments are conducted on the standard Arabic TREC 2001/2002 collection using three neural WE models. The obtained results show that our PRF extensions significantly outperform their baseline PRF models. Moreover, they enhanced the baseline IR model by 22% and 68% for the mean average precision (MAP) and the robustness index (RI), respectively.


2021 ◽  
pp. 016555152110406
Author(s):  
Yasir Hadi Farhan ◽  
Shahrul Azman Mohd Noah ◽  
Masnizah Mohd ◽  
Jaffar Atwan

One of the main issues associated with search engines is the query–document vocabulary mismatch problem, a long-standing problem in Information Retrieval (IR). This problem occurs when a user query does not match the content of stored documents, and it affects most search tasks. Automatic query expansion (AQE) is one of the most common approaches used to address this problem. Various AQE techniques have been proposed; these mainly involve finding synonyms or related words for the query terms. Word embedding (WE) is one of the methods that are currently receiving significant attention. Most of the existing AQE techniques focus on expanding the individual query terms rather the entire query during the expansion process, and this can lead to query drift if poor expansion terms are selected. In this article, we introduce Deep Averaging Networks (DANs), an architecture that feeds the average of the WE vectors produced by the Word2Vec toolkit for the terms in a query through several linear neural network layers. This average vector is assumed to represent the meaning of the query as a whole and can be used to find expansion terms that are relevant to the complete query. We explore the potential of DANs for AQE in Arabic document retrieval. We experiment with using DANs for AQE in the classic probabilistic BM25 model as well as for two recent expansion strategies: Embedding-Based Query Expansion approach (EQE1) and Prospect-Guided Query Expansion Strategy (V2Q). Although DANs did not improve all outcomes when used in the BM25 model, it outperformed all baselines when incorporated into the EQE1 and V2Q expansion strategies.


Author(s):  
Qinyuan Xiang ◽  
Weijiang Li ◽  
Hui Deng ◽  
Feng Wang

Sign in / Sign up

Export Citation Format

Share Document