Parameter Estimation and Statistical Test in Mixed Model of Geographically Weighted Bivariate Poisson Inverse Gaussian Regression

Author(s):  
Nendy Septi Arniva ◽  
Purhadi ◽  
Sutikno
2021 ◽  
Vol 880 (1) ◽  
pp. 012045
Author(s):  
Meylita Sari ◽  
Sutikno ◽  
Purhadi

Abstract One of the appropriate methods used to model count data response and its corresponding predictors is Poisson regression. Poisson regression strictly assumes that the mean and variance of response variables should be equal (equidispersion). Nonetheless, some cases of the count data unsatisfied this assumption because variance can be larger than mean (over-dispersion). If overdispersion is violated, causing the underestimate standard error. Furthermore, this will lead to incorrect conclusions in the statistical test. Thus, a suitable method for modelling this kind of data needs to develop. One alternative model to outcome the overdispersion issue in bivariate response variable is the Bivariate Poisson Inverse Gaussian Regression (BPIGR) model. The BPIGR model can produce a global model for all locations. On the other hand, each location and time have different geographic conditions, social, cultural, and economical so that Geographically and Temporally Bivariate Poisson Inverse Gaussian Regression (GTWBPIGR)) is needed. The weighting function spatial-temporal in GTWBPIGR generates a different local model for each period. GTWBPIGR model solves the overdispersion case and generates global models for each period and location. The parameter estimation of the GTWBPIGR model uses the Maximum Likelihood Estimation (MLE) method, followed by Newton Raphson iteration. Meanwhile, the test statistics on the hypothesis testing is simultaneously testing of the GTWBPIGR model is obtained with the Maximum Likelihood Ratio Test (MLRT) approach, using n large samples of the statistical test is chi-square distribution. Moreover, the test statistics for partially testing used the Z-test statistic.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1738
Author(s):  
Selvi Mardalena ◽  
Purhadi Purhadi ◽  
Jerry Dwi Trijoyo Purnomo ◽  
Dedy Dwi Prastyo

Multivariate Poisson regression is used in order to model two or more count response variables. The Poisson regression has a strict assumption, that is the mean and the variance of response variables are equal (equidispersion). Practically, the variance can be larger than the mean (overdispersion). Thus, a suitable method for modelling these kind of data needs to be developed. One alternative model to overcome the overdispersion issue in the multi-count response variables is the Multivariate Poisson Inverse Gaussian Regression (MPIGR) model, which is extended with an exposure variable. Additionally, a modification of Bessel function that contain factorial functions is proposed in this work to make it computable. The objective of this study is to develop the parameter estimation and hypothesis testing of the MPIGR model. The parameter estimation uses the Maximum Likelihood Estimation (MLE) method, followed by the Newton–Raphson iteration. The hypothesis testing is constructed using the Maximum Likelihood Ratio Test (MLRT) method. The MPIGR model that has been developed is then applied to regress three response variables, i.e., the number of infant mortality, the number of under-five children mortality, and the number of maternal mortality on eight predictors. The unit observation is the cities and municipalities in Java Island, Indonesia. The empirical results show that three response variables that are previously mentioned are significantly affected by all predictors.


1989 ◽  
Vol 17 (2) ◽  
pp. 171-181 ◽  
Author(s):  
C. Dean ◽  
J. F. Lawless ◽  
G. E. Willmot

1995 ◽  
Vol 24 (10) ◽  
pp. 2609-2620 ◽  
Author(s):  
Mammo Woldie ◽  
J. Leroy Folks

Sign in / Sign up

Export Citation Format

Share Document