Scaling up Mobile Service Selection in Edge Computing Environment with Cuckoo Optimization Algorithm

Author(s):  
Ming Zhu ◽  
Feilong Yu ◽  
Xiukun Yan ◽  
Jing Li ◽  
Yaoting Wang
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2628
Author(s):  
Mengxing Huang ◽  
Qianhao Zhai ◽  
Yinjie Chen ◽  
Siling Feng ◽  
Feng Shu

Computation offloading is one of the most important problems in edge computing. Devices can transmit computation tasks to servers to be executed through computation offloading. However, not all the computation tasks can be offloaded to servers with the limitation of network conditions. Therefore, it is very important to decide quickly how many tasks should be executed on servers and how many should be executed locally. Only computation tasks that are properly offloaded can improve the Quality of Service (QoS). Some existing methods only focus on a single objection, and of the others some have high computational complexity. There still have no method that could balance the targets and complexity for universal application. In this study, a Multi-Objective Whale Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve the optimal offloading mechanism of computation offloading in mobile edge computing. It is the first time that MOWOA has been applied in this area. For improving the quality of the solution set, crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally, an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm (CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs better in terms of the quality of the final solutions.


Author(s):  
Bo Li ◽  
Qiang He ◽  
Feifei Chen ◽  
Hai Jin ◽  
Yang Xiang ◽  
...  

2020 ◽  
Vol 165 ◽  
pp. 102715
Author(s):  
Chunlin Li ◽  
Mingyang Song ◽  
Shaofeng Du ◽  
Xiaohai Wang ◽  
Min Zhang ◽  
...  

2021 ◽  
pp. 0734242X2110039
Author(s):  
Elham Shadkam

Today, reverse logistics (RL) is one of the main activities of supply chain management that covers all physical activities associated with return products (such as collection, recovery, recycling and destruction). In this regard, the designing and proper implementation of RL, in addition to increasing the level of customer satisfaction, reduces inventory and transportation costs. In this paper, in order to minimize the costs associated with fixed costs, material flow costs, and the costs of building potential centres, a complex integer linear programming model for an integrated direct logistics and RL network design is presented. Due to the outbreak of the ongoing global coronavirus pandemic (COVID-19) at the beginning of 2020 and the consequent increase in medical waste, the need for an inverse logistics system to manage waste is strongly felt. Also, due to the worldwide vaccination in the near future, this waste will increase even more and careful management must be done in this regard. For this purpose, the proposed RL model in the field of COVID-19 waste management and especially vaccine waste has been designed. The network consists of three parts – factory, consumers’ and recycling centres – each of which has different sub-parts. Finally, the proposed model is solved using the cuckoo optimization algorithm, which is one of the newest and most powerful meta-heuristic algorithms, and the computational results are presented along with its sensitivity analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Wenwen Gong ◽  
Lianyong Qi ◽  
Yanwei Xu

With the ever-increasing popularity of mobile computing technology, a wide range of computational resources or services (e.g., movies, food, and places of interest) are migrating to the mobile infrastructure or devices (e.g., mobile phones, PDA, and smart watches), imposing heavy burdens on the service selection decisions of users. In this situation, service recommendation has become one of the promising ways to alleviate such burdens. In general, the service usage data used to make service recommendation are produced by various mobile devices and collected by distributed edge platforms, which leads to potential leakage of user privacy during the subsequent cross-platform data collaboration and service recommendation process. Locality-Sensitive Hashing (LSH) technique has recently been introduced to realize the privacy-preserving distributed service recommendation. However, existing LSH-based recommendation approaches often consider only one quality dimension of services, without considering the multidimensional recommendation scenarios that are more complex but more common. In view of this drawback, we improve the traditional LSH and put forward a novel LSH-based service recommendation approach named SerRecmulti-qos, to protect users’ privacy over multiple quality dimensions during the distributed mobile service recommendation process.


Sign in / Sign up

Export Citation Format

Share Document