Deep reinforcement learning for computation offloading in mobile edge computing environment

Author(s):  
Miaojiang Chen ◽  
Tian Wang ◽  
Shaobo Zhang ◽  
Anfeng Liu
2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Binbin Huang ◽  
Yangyang Li ◽  
Zhongjin Li ◽  
Linxuan Pan ◽  
Shangguang Wang ◽  
...  

With the explosive growth of mobile applications, mobile devices need to be equipped with abundant resources to process massive and complex mobile applications. However, mobile devices are usually resource-constrained due to their physical size. Fortunately, mobile edge computing, which enables mobile devices to offload computation tasks to edge servers with abundant computing resources, can significantly meet the ever-increasing computation demands from mobile applications. Nevertheless, offloading tasks to the edge servers are liable to suffer from external security threats (e.g., snooping and alteration). Aiming at this problem, we propose a security and cost-aware computation offloading (SCACO) strategy for mobile users in mobile edge computing environment, the goal of which is to minimize the overall cost (including mobile device’s energy consumption, processing delay, and task loss probability) under the risk probability constraints. Specifically, we first formulate the computation offloading problem as a Markov decision process (MDP). Then, based on the popular deep reinforcement learning approach, deep Q-network (DQN), the optimal offloading policy for the proposed problem is derived. Finally, extensive experimental results demonstrate that SCACO can achieve the security and cost efficiency for the mobile user in the mobile edge computing environment.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 134742-134753 ◽  
Author(s):  
Shengli Pan ◽  
Zhiyong Zhang ◽  
Zongwang Zhang ◽  
Deze Zeng

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Binbin Huang ◽  
Yuanyuan Xiang ◽  
Dongjin Yu ◽  
Jiaojiao Wang ◽  
Zhongjin Li ◽  
...  

Mobile edge computing as a novel computing paradigm brings remote cloud resource to the edge servers nearby mobile users. Within one-hop communication range of mobile users, a number of edge servers equipped with enormous computation and storage resources are deployed. Mobile users can offload their partial or all computation tasks of a workflow application to the edge servers, thereby significantly reducing the completion time of the workflow application. However, due to the open nature of mobile edge computing environment, these tasks, offloaded to the edge servers, are susceptible to be intentionally overheard or tampered by malicious attackers. In addition, the edge computing environment is dynamical and time-variant, which results in the fact that the existing quasistatic workflow application scheduling scheme cannot be applied to the workflow scheduling problem in dynamical mobile edge computing with malicious attacks. To address these two problems, this paper formulates the workflow scheduling problem with risk probability constraint in the dynamic edge computing environment with malicious attacks to be a Markov Decision Process (MDP). To solve this problem, this paper designs a reinforcement learning-based security-aware workflow scheduling (SAWS) scheme. To demonstrate the effectiveness of our proposed SAWS scheme, this paper compares SAWS with MSAWS, AWM, Greedy, and HEFT baseline algorithms in terms of different performance parameters including risk probability, security service, and risk coefficient. The extensive experiments results show that, compared with the four baseline algorithms in workflows of different scales, the SAWS strategy can achieve better execution efficiency while satisfying the risk probability constraints.


2021 ◽  
Author(s):  
Laha Ale ◽  
Scott King ◽  
Ning Zhang ◽  
Abdul Sattar ◽  
Janahan Skandaraniyam

<div> Mobile Edge Computing (MEC) has been regarded as a promising paradigm to reduce service latency for data processing in Internet of Things, by provisioning computing resources at network edge. In this work, we jointly optimize the task partitioning and computational power allocation for computation offloading in a dynamic environment with multiple IoT devices and multiple edge servers. We formulate the problem as a Markov decision process with constrained hybrid action space, which cannot be well handled by existing deep reinforcement learning (DRL) algorithms. Therefore, we develop a novel Deep Reinforcement Learning called Dirichlet Deep Deterministic Policy Gradient (D3PG), which </div><div>is built on Deep Deterministic Policy Gradient (DDPG) to solve the problem. The developed model can learn to solve multi-objective optimization, including maximizing the number of tasks processed before expiration and minimizing the energy cost and service latency. More importantly, D3PG can effectively deal with constrained distribution-continuous hybrid action space, where the distribution variables are for the task partitioning and offloading, while the continuous variables are for computational frequency control. Moreover, the D3PG can address many similar issues in MEC and general reinforcement learning problems. Extensive simulation results show that the proposed D3PG outperforms the state-of-art methods.</div><div> Mobile Edge Computing (MEC) has been regarded as a promising paradigm to reduce service latency for data processing in Internet of Things, by provisioning computing resources at network edge. In this work, we jointly optimize the task partitioning and computational power allocation for computation offloading in a dynamic environment with multiple IoT devices and multiple edge servers. We formulate the problem as a Markov decision process with constrained hybrid action space, which cannot be well handled by existing deep reinforcement learning (DRL) algorithms. Therefore, we develop a novel Deep Reinforcement Learning called Dirichlet Deep Deterministic Policy Gradient (D3PG), which is built on Deep Deterministic Policy Gradient (DDPG) to solve the problem. The developed model can learn to solve multi-objective optimization, including maximizing the number of tasks processed before expiration and minimizing the energy cost and service latency. More importantly, D3PG can effectively deal with constrained distribution-continuous hybrid action space, where the distribution variables are for the task partitioning and offloading, while the continuous variables are for computational frequency control. Moreover, the D3PG can address many similar issues in MEC and general reinforcement learning problems. Extensive simulation results show that the proposed D3PG outperforms the state-of-art methods.</div>


Sign in / Sign up

Export Citation Format

Share Document