Dataflow Management Platform for Smart Communities using an Edge Computing Environment

Author(s):  
Shogo Shimahara ◽  
Hiroaki Nishi
Author(s):  
Bo Li ◽  
Qiang He ◽  
Feifei Chen ◽  
Hai Jin ◽  
Yang Xiang ◽  
...  

2020 ◽  
Vol 165 ◽  
pp. 102715
Author(s):  
Chunlin Li ◽  
Mingyang Song ◽  
Shaofeng Du ◽  
Xiaohai Wang ◽  
Min Zhang ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 421
Author(s):  
Pedro Juan Roig ◽  
Salvador Alcaraz ◽  
Katja Gilly ◽  
Cristina Bernad ◽  
Carlos Juiz

Multi-access edge computing implementations are ever increasing in both the number of deployments and the areas of application. In this context, the easiness in the operations of packet forwarding between two end devices being part of a particular edge computing infrastructure may allow for a more efficient performance. In this paper, an arithmetic framework based in a layered approach has been proposed in order to optimize the packet forwarding actions, such as routing and switching, in generic edge computing environments by taking advantage of the properties of integer division and modular arithmetic, thus simplifying the search of the proper next hop to reach the desired destination into simple arithmetic operations, as opposed to having to look into the routing or switching tables. In this sense, the different type of communications within a generic edge computing environment are first studied, and afterwards, three diverse case scenarios have been described according to the arithmetic framework proposed, where all of them have been further verified by using arithmetic means with the help of applying theorems, as well as algebraic means, with the help of searching for behavioral equivalences.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiang Yu ◽  
Chun Shan ◽  
Jilong Bian ◽  
Xianfei Yang ◽  
Ying Chen ◽  
...  

With the rapid development of Internet of Things (IoT), massive sensor data are being generated by the sensors deployed everywhere at an unprecedented rate. As the number of Internet of Things devices is estimated to grow to 25 billion by 2021, when facing the explicit or implicit anomalies in the real-time sensor data collected from Internet of Things devices, it is necessary to develop an effective and efficient anomaly detection method for IoT devices. Recent advances in the edge computing have significant impacts on the solution of anomaly detection in IoT. In this study, an adaptive graph updating model is first presented, based on which a novel anomaly detection method for edge computing environment is then proposed. At the cloud center, the unknown patterns are classified by a deep leaning model, based on the classification results, the feature graphs are updated periodically, and the classification results are constantly transmitted to each edge node where a cache is employed to keep the newly emerging anomalies or normal patterns temporarily until the edge node receives a newly updated feature graph. Finally, a series of comparison experiments are conducted to demonstrate the effectiveness of the proposed anomaly detection method for edge computing. And the results show that the proposed method can detect the anomalies in the real-time sensor data efficiently and accurately. More than that, the proposed method performs well when there exist newly emerging patterns, no matter they are anomalous or normal.


Sign in / Sign up

Export Citation Format

Share Document