scholarly journals Refinery Scheduling Optimization using Genetic Algorithms and Cooperative Coevolution

Author(s):  
Leonardo M. Simao ◽  
Douglas M. Dias ◽  
Marco Aur lio C. Pacheco
2021 ◽  
Vol 9 (3) ◽  
pp. 157-166
Author(s):  
Arif Amrulloh ◽  
Enny Itje Sela

Scheduling courses in higher education often face problems, such as the clashes of teachers' schedules, rooms, and students' schedules. This study proposes course scheduling optimization using genetic algorithms and taboo search. The genetic algorithm produces the best generation of chromosomes composed of lecturer, day, and hour genes. The Tabu search method is used for the lecture rooms division. Scheduling is carried out for the Informatics faculty with four study programs, 65 lecturers, 93 courses, 265 lecturer assignments, and 65 classes. The process of generating 265 schedules took 561 seconds without any scheduling clashes. The genetic algorithms and taboo searches can process quite many course schedules faster than the manual method.


Author(s):  
Fateh Boutekkouk

This article deals with real time embedded multiprocessor systems scheduling optimization using conventional and quantum inspired genetic algorithms. Real time scheduling problems are known to be NP-hard. In order to resolve it, researchers have resorted to meta-heuristics instead of exact methods. Genetic algorithms seem to be a good choice to solve complex, non-linear, multi-objective and multi-modal problems. However, conventional genetic algorithms may consume much time to find good solutions. For this reason, to minimize the mean response time and the number of tasks missing their deadlines using quantum inspired genetic algorithms for multiprocessors architectures. Our proposed approach takes advantage of both static and dynamic preemptive scheduling. This article has the developed algorithms on a typical example showing a big improvement in research time of good solutions in quantum genetic algorithms with comparison to conventional ones.


2019 ◽  
Vol 12 (4) ◽  
pp. 132-152
Author(s):  
Fateh Boutekkouk

This article deals with real time embedded multiprocessor systems scheduling optimization using conventional and quantum inspired genetic algorithms. Real time scheduling problems are known to be NP-hard. In order to resolve it, researchers have resorted to meta-heuristics instead of exact methods. Genetic algorithms seem to be a good choice to solve complex, non-linear, multi-objective and multi-modal problems. However, conventional genetic algorithms may consume much time to find good solutions. For this reason, to minimize the mean response time and the number of tasks missing their deadlines using quantum inspired genetic algorithms for multiprocessors architectures. Our proposed approach takes advantage of both static and dynamic preemptive scheduling. This article has the developed algorithms on a typical example showing a big improvement in research time of good solutions in quantum genetic algorithms with comparison to conventional ones.


Author(s):  
Yuting Wu ◽  
Ling Wang ◽  
Jing-fang Chen

AbstractUnder the current volatile business environment, the requirement of flexible production is becoming increasingly urgent. As an innovative production mode, seru-system with reconfigurability can overcome the lack of flexibility in traditional flow lines. Compared with pure seru-system, the hybrid seru-system composed of both serus and production lines is more practical for adapting to many production processes. This paper addresses a specific hybrid seru-system scheduling optimization problem (HSSOP), which includes three strongly coupled sub-problems, i.e., hybrid seru formation, seru scheduling and flow line scheduling. To minimize the makespan of the whole hybrid seru-system, we propose an efficient cooperative coevolution algorithm (CCA). To tackle three sub-problems, specific sub-algorithms are designed based on the characteristic of each sub-problem, i.e., a sub-space exploitation algorithm for hybrid seru formation, an estimation of distribution algorithm for seru scheduling, and a first-arrive-first-process heuristic for flow line scheduling. Since three sub-problems are coupled, a cooperation coevolution mechanism is proposed for the integrated algorithm by information sharing. Moreover, a batch reassign rule is designed to overcome the mismatch of partial solutions during cooperative coevolution. To enhance the exploitation ability, problem-specific local search methods are designed and embedded in the CCA. In addition to the investigation about the effect of parameter setting, extensive computational tests and comparisons are carried out which demonstrate the effectiveness and efficiency of the CCA in solving the HSSOP.


Sign in / Sign up

Export Citation Format

Share Document