Constructing O(n Log n) Size Monotone Formulae For The k-th Elementary Symmetric Polynomial Of n Boolean Variables

Author(s):  
J. Friedman
2013 ◽  
Vol 89 (3) ◽  
pp. 420-430 ◽  
Author(s):  
XIAOER QIN ◽  
SHAOFANG HONG

AbstractIn this paper, we construct several new permutation polynomials over finite fields. First, using the linearised polynomials, we construct the permutation polynomial of the form ${ \mathop{\sum }\nolimits}_{i= 1}^{k} ({L}_{i} (x)+ {\gamma }_{i} ){h}_{i} (B(x))$ over ${\mathbf{F} }_{{q}^{m} } $, where ${L}_{i} (x)$ and $B(x)$ are linearised polynomials. This extends a theorem of Coulter, Henderson and Matthews. Consequently, we generalise a result of Marcos by constructing permutation polynomials of the forms $xh({\lambda }_{j} (x))$ and $xh({\mu }_{j} (x))$, where ${\lambda }_{j} (x)$ is the $j$th elementary symmetric polynomial of $x, {x}^{q} , \ldots , {x}^{{q}^{m- 1} } $ and ${\mu }_{j} (x)= {\mathrm{Tr} }_{{\mathbf{F} }_{{q}^{m} } / {\mathbf{F} }_{q} } ({x}^{j} )$. This answers an open problem raised by Zieve in 2010. Finally, by using the linear translator, we construct the permutation polynomial of the form ${L}_{1} (x)+ {L}_{2} (\gamma )h(f(x))$ over ${\mathbf{F} }_{{q}^{m} } $, which extends a result of Kyureghyan.


2015 ◽  
Vol 7 (4) ◽  
pp. 26
Author(s):  
Soumendra Bera

<p>Complete homogeneous symmetric polynomial has connections with binomial coefficient, composition, elementary symmetric polynomial, exponential function, falling factorial, generating series, odd prime and Stirling numbers of the second kind by different summations. Surprisingly the relations in the context are comparable in pairs. </p>


2009 ◽  
Vol 9 (7&8) ◽  
pp. 622-627
Author(s):  
M. Hellmund ◽  
A. Uhlmann

Let $S(\rho)=-\Tr (\rho\log\rho)$ be the von Neumann entropy of an $N$-dimensional quantum state $\rho$ and $e_2(\rho)$ the second elementary symmetric polynomial of the eigenvalues of $\rho$. We prove the inequality S(\rho) \;\le \; c(N) \; \sqrt{e_2(\rho)} where $c(N)=\log(N) \, \sqrt{\frac{2N}{N-1}}$. This generalizes an inequality given by Fuchs and Graaf~\cite{fuchsgraaf} for the case of one qubit, i.e., $N=2$. Equality is achieved if and only if $\rho$ is either a pure or the maximally mixed state. This inequality delivers new bounds for quantities of interest in quantum information theory, such as upper bounds for the minimum output entropy and the entanglement of formation as well as a lower bound for the Holevo channel capacity.


2002 ◽  
Vol 54 (2) ◽  
pp. 239-262 ◽  
Author(s):  
Donald I. Cartwright ◽  
Tim Steger

AbstractWe describe the set of numbers σk(z1,…,zn+1), where z1,…,zn+1 are complex numbers of modulus 1 for which z1z2 … zn+1 = 1, and σk denotes the k-th elementary symmetric polynomial. Consequently, we give sharp constraints on the coefficients of a complex polynomial all of whose roots are of the same modulus. Another application is the calculation of the spectrum of certain adjacency operators arising naturally on a building of type Ãn.


2007 ◽  
Vol 79 (4) ◽  
pp. 563-575 ◽  
Author(s):  
Jaume Llibre ◽  
Marcelo Messias

In this paper we study a class of symmetric polynomial differential systems in R³, which has a set of parallel invariant straight lines, forming degenerate heteroclinic cycles, which have their two singular endpoints at infinity. The global study near infinity is performed using the Poincaré compactification. We prove that for all n <FONT FACE=Symbol>Î</FONT> N there is epsilonn > 0 such that for 0 < epsilon < epsilonn the system has at least n large amplitude periodic orbits bifurcating from the heteroclinic loop formed by the two invariant straight lines closest to the x-axis, one contained in the half-space y > 0 and the other in y < 0.


2012 ◽  
Vol 60 (4) ◽  
pp. 499-510
Author(s):  
Hui-Feng Hao ◽  
Yong-Jian Hu ◽  
Gong-Ning Chen

10.37236/7387 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Anna Stokke

The classical Pieri formula gives a combinatorial rule for decomposing the product of a Schur function and a complete homogeneous symmetric polynomial as a linear combination of Schur functions with integer coefficients. We give a Pieri rule for describing the product of an orthosymplectic character and an orthosymplectic character arising from a one-row partition. We establish that the orthosymplectic Pieri rule coincides with Sundaram's Pieri rule for symplectic characters and that orthosymplectic characters and symplectic characters obey the same product rule. 


Sign in / Sign up

Export Citation Format

Share Document