Elementary Symmetric Polynomials in Numbers of Modulus 1

2002 ◽  
Vol 54 (2) ◽  
pp. 239-262 ◽  
Author(s):  
Donald I. Cartwright ◽  
Tim Steger

AbstractWe describe the set of numbers σk(z1,…,zn+1), where z1,…,zn+1 are complex numbers of modulus 1 for which z1z2 … zn+1 = 1, and σk denotes the k-th elementary symmetric polynomial. Consequently, we give sharp constraints on the coefficients of a complex polynomial all of whose roots are of the same modulus. Another application is the calculation of the spectrum of certain adjacency operators arising naturally on a building of type Ãn.

2020 ◽  
Vol 12 (1) ◽  
pp. 5-16
Author(s):  
T.V. Vasylyshyn

This work is devoted to study algebras of continuous symmetric, that is, invariant with respect to permutations of coordinates of its argument, polynomials and $*$-polynomials on Banach spaces $\ell_p(\mathbb{R}^n)$ and $\ell_p(\mathbb{C}^n)$ of $p$-power summable sequences of $n$-dimensional vectors of real and complex numbers resp., where $1\leq p < +\infty.$ We construct the subset of the algebra of all continuous symmetric polynomials on the space $\ell_p(\mathbb{R}^n)$ such that every continuous symmetric polynomial on the space $\ell_p(\mathbb{R}^n)$ can be uniquely represented as a linear combination of products of elements of this set. In other words, we construct an algebraic basis of the algebra of all continuous symmetric polynomials on the space $\ell_p(\mathbb{R}^n).$ Using this result, we construct an algebraic basis of the algebra of all continuous symmetric $*$-polynomials on the space $\ell_p(\mathbb{C}^n).$ Results of the paper can be used for investigations of algebras, generated by continuous symmetric polynomials on the space $\ell_p(\mathbb{R}^n),$ and algebras, generated by continuous symmetric $*$-polynomials on the space $\ell_p(\mathbb{C}^n).$


2018 ◽  
Vol 10 (2) ◽  
pp. 395-401
Author(s):  
T.V. Vasylyshyn

$*$-Polynomials are natural generalizations of usual polynomials between complex vector spaces. A $*$-polynomial is a function between complex vector spaces $X$ and $Y,$ which is a sum of so-called $(p,q)$-polynomials. In turn, for nonnegative integers $p$ and $q,$ a $(p,q)$-polynomial is a function between $X$ and $Y,$ which is the restriction to the diagonal of some mapping, acting from the Cartesian power $X^{p+q}$ to $Y,$ which is linear with respect to every of its first $p$ arguments, antilinear with respect to every of its last $q$ arguments and invariant with respect to permutations of its first $p$ arguments and last $q$ arguments separately. In this work we construct formulas for recovering of $(p,q)$-polynomial components of $*$-polynomials, acting between complex vector spaces $X$ and $Y,$ by the values of $*$-polynomials. We use these formulas for investigations of $*$-polynomials, acting from the $n$-dimensional complex vector space $\mathbb{C}^n$ to $\mathbb{C},$ which are symmetric, that is, invariant with respect to permutations of coordinates of its argument. We show that every symmetric $*$-polynomial, acting from $\mathbb{C}^n$ to $\mathbb{C},$ can be represented as an algebraic combination of some "elementary" symmetric $*$-polynomials. Results of the paper can be used for investigations of algebras, generated by symmetric $*$-polynomials, acting from $\mathbb{C}^n$ to $\mathbb{C}.$


10.37236/9354 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Per Alexandersson ◽  
Luis Angel González-Serrano ◽  
Egor Maximenko ◽  
Mario Alberto Moctezuma-Salazar

Given a symmetric polynomial $P$ in $2n$ variables, there exists a unique symmetric polynomial $Q$ in $n$ variables such that\[P(x_1,\ldots,x_n,x_1^{-1},\ldots,x_n^{-1})=Q(x_1+x_1^{-1},\ldots,x_n+x_n^{-1}).\] We denote this polynomial $Q$ by $\Phi_n(P)$ and show that $\Phi_n$ is an epimorphism of algebras. We compute $\Phi_n(P)$ for several families of symmetric polynomials $P$: symplectic and orthogonal Schur polynomials, elementary symmetric polynomials, complete homogeneous polynomials, and power sums. Some of these formulas were already found by Elouafi (2014) and Lachaud (2016). The polynomials of the form $\Phi_n(\operatorname{s}_{\lambda/\mu}^{(2n)})$, where $\operatorname{s}_{\lambda/\mu}^{(2n)}$ is a skew Schur polynomial in $2n$ variables, arise naturally in the study of the minors of symmetric banded Toeplitz matrices, when the generating symbol is a palindromic Laurent polynomial, and its roots can be written as $x_1,\ldots,x_n,x^{-1}_1,\ldots,x^{-1}_n$. Trench (1987) and Elouafi (2014) found efficient formulas for the determinants of symmetric banded Toeplitz matrices. We show that these formulas are equivalent to the result of Ciucu and Krattenthaler (2009) about the factorization of the characters of classical groups.


2013 ◽  
Vol 89 (3) ◽  
pp. 420-430 ◽  
Author(s):  
XIAOER QIN ◽  
SHAOFANG HONG

AbstractIn this paper, we construct several new permutation polynomials over finite fields. First, using the linearised polynomials, we construct the permutation polynomial of the form ${ \mathop{\sum }\nolimits}_{i= 1}^{k} ({L}_{i} (x)+ {\gamma }_{i} ){h}_{i} (B(x))$ over ${\mathbf{F} }_{{q}^{m} } $, where ${L}_{i} (x)$ and $B(x)$ are linearised polynomials. This extends a theorem of Coulter, Henderson and Matthews. Consequently, we generalise a result of Marcos by constructing permutation polynomials of the forms $xh({\lambda }_{j} (x))$ and $xh({\mu }_{j} (x))$, where ${\lambda }_{j} (x)$ is the $j$th elementary symmetric polynomial of $x, {x}^{q} , \ldots , {x}^{{q}^{m- 1} } $ and ${\mu }_{j} (x)= {\mathrm{Tr} }_{{\mathbf{F} }_{{q}^{m} } / {\mathbf{F} }_{q} } ({x}^{j} )$. This answers an open problem raised by Zieve in 2010. Finally, by using the linear translator, we construct the permutation polynomial of the form ${L}_{1} (x)+ {L}_{2} (\gamma )h(f(x))$ over ${\mathbf{F} }_{{q}^{m} } $, which extends a result of Kyureghyan.


2021 ◽  
Author(s):  
◽  
Leigh Alan Roberts

<p>Jack polynomials are useful in mathematical statistics, but they are awkward to calculate, and their uses have chiefly been theoretical. In this thesis a determinantal expansion of Jack polynomials in elementary symmetric polynomials is found, complementing a recent result in the literature on expansions as determinants in monomial symmetric functions. These results offer enhanced possibilities for the calculation of these polynomials, and for finding workable approximations to them. The thesis investigates the structure of the determinants concerned, finding which terms can be expected to dominate, and quantifying the sparsity of the matrices involved. Expressions are found for the elementary and monomial symmetric polynomials when the variates involved assume the form of arithmetic and geometric progressions. The latter case in particular is expected to facilitate the construction of algorithms suitable for approximating Jack polynomials.</p>


Sign in / Sign up

Export Citation Format

Share Document