elementary symmetric polynomials
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Leigh Alan Roberts

<p>Jack polynomials are useful in mathematical statistics, but they are awkward to calculate, and their uses have chiefly been theoretical. In this thesis a determinantal expansion of Jack polynomials in elementary symmetric polynomials is found, complementing a recent result in the literature on expansions as determinants in monomial symmetric functions. These results offer enhanced possibilities for the calculation of these polynomials, and for finding workable approximations to them. The thesis investigates the structure of the determinants concerned, finding which terms can be expected to dominate, and quantifying the sparsity of the matrices involved. Expressions are found for the elementary and monomial symmetric polynomials when the variates involved assume the form of arithmetic and geometric progressions. The latter case in particular is expected to facilitate the construction of algorithms suitable for approximating Jack polynomials.</p>


2021 ◽  
Author(s):  
◽  
Leigh Alan Roberts

<p>Jack polynomials are useful in mathematical statistics, but they are awkward to calculate, and their uses have chiefly been theoretical. In this thesis a determinantal expansion of Jack polynomials in elementary symmetric polynomials is found, complementing a recent result in the literature on expansions as determinants in monomial symmetric functions. These results offer enhanced possibilities for the calculation of these polynomials, and for finding workable approximations to them. The thesis investigates the structure of the determinants concerned, finding which terms can be expected to dominate, and quantifying the sparsity of the matrices involved. Expressions are found for the elementary and monomial symmetric polynomials when the variates involved assume the form of arithmetic and geometric progressions. The latter case in particular is expected to facilitate the construction of algorithms suitable for approximating Jack polynomials.</p>


10.37236/9354 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Per Alexandersson ◽  
Luis Angel González-Serrano ◽  
Egor Maximenko ◽  
Mario Alberto Moctezuma-Salazar

Given a symmetric polynomial $P$ in $2n$ variables, there exists a unique symmetric polynomial $Q$ in $n$ variables such that\[P(x_1,\ldots,x_n,x_1^{-1},\ldots,x_n^{-1})=Q(x_1+x_1^{-1},\ldots,x_n+x_n^{-1}).\] We denote this polynomial $Q$ by $\Phi_n(P)$ and show that $\Phi_n$ is an epimorphism of algebras. We compute $\Phi_n(P)$ for several families of symmetric polynomials $P$: symplectic and orthogonal Schur polynomials, elementary symmetric polynomials, complete homogeneous polynomials, and power sums. Some of these formulas were already found by Elouafi (2014) and Lachaud (2016). The polynomials of the form $\Phi_n(\operatorname{s}_{\lambda/\mu}^{(2n)})$, where $\operatorname{s}_{\lambda/\mu}^{(2n)}$ is a skew Schur polynomial in $2n$ variables, arise naturally in the study of the minors of symmetric banded Toeplitz matrices, when the generating symbol is a palindromic Laurent polynomial, and its roots can be written as $x_1,\ldots,x_n,x^{-1}_1,\ldots,x^{-1}_n$. Trench (1987) and Elouafi (2014) found efficient formulas for the determinants of symmetric banded Toeplitz matrices. We show that these formulas are equivalent to the result of Ciucu and Krattenthaler (2009) about the factorization of the characters of classical groups.


2019 ◽  
Vol 11 (2) ◽  
pp. 493-501
Author(s):  
T.V. Vasylyshyn

It is known that every continuous symmetric (invariant under the composition of its argument with each Lebesgue measurable bijection of $[0,1]$ that preserve the Lebesgue measure of measurable sets) polynomial on the Cartesian power of the complex Banach space $L_\infty$ of all Lebesgue measurable essentially bounded complex-valued functions on $[0,1]$ can be uniquely represented as an algebraic combination, i.e., a linear combination of products, of the so-called elementary symmetric polynomials. Consequently, every continuous complex-valued linear multiplicative functional (character) of an arbitrary topological algebra of the functions on the Cartesian power of $L_\infty,$ which contains the algebra of continuous symmetric polynomials on the Cartesian power of $L_\infty$ as a dense subalgebra, is uniquely determined by its values on elementary symmetric polynomials. Therefore, the problem of the description of the spectrum (the set of all characters) of such an algebra is equivalent to the problem of the description of sets of the above-mentioned values of characters on elementary symmetric polynomials. In this work, the problem of the description of sets of values of characters, which are point-evaluation functionals, on elementary symmetric polynomials on the Cartesian square of $L_\infty$ is completely solved. We show that sets of values of point-evaluation functionals on elementary symmetric polynomials satisfy some natural condition. Also, we show that for any set $c$ of complex numbers, which satisfies the above-mentioned condition, there exists an element $x$ of the Cartesian square of $L_\infty$ such that values of the point-evaluation functional at $x$ on elementary symmetric polynomials coincide with the respective elements of the set $c.$


Author(s):  
Jian Xiao

Abstract It is noted that using complex Hessian equations and the concavity inequalities for elementary symmetric polynomials implies a generalized form of Hodge index inequality. Inspired by this result, using Gårding’s theory for hyperbolic polynomials, we obtain a mixed Hodge-index type theorem for classes of type $(1,1)$. The new feature is that this Hodge-index type theorem holds with respect to mixed polarizations in which some satisfy particular positivity condition but could be degenerate and even negative along some directions.


2018 ◽  
Vol 10 (2) ◽  
pp. 395-401
Author(s):  
T.V. Vasylyshyn

$*$-Polynomials are natural generalizations of usual polynomials between complex vector spaces. A $*$-polynomial is a function between complex vector spaces $X$ and $Y,$ which is a sum of so-called $(p,q)$-polynomials. In turn, for nonnegative integers $p$ and $q,$ a $(p,q)$-polynomial is a function between $X$ and $Y,$ which is the restriction to the diagonal of some mapping, acting from the Cartesian power $X^{p+q}$ to $Y,$ which is linear with respect to every of its first $p$ arguments, antilinear with respect to every of its last $q$ arguments and invariant with respect to permutations of its first $p$ arguments and last $q$ arguments separately. In this work we construct formulas for recovering of $(p,q)$-polynomial components of $*$-polynomials, acting between complex vector spaces $X$ and $Y,$ by the values of $*$-polynomials. We use these formulas for investigations of $*$-polynomials, acting from the $n$-dimensional complex vector space $\mathbb{C}^n$ to $\mathbb{C},$ which are symmetric, that is, invariant with respect to permutations of coordinates of its argument. We show that every symmetric $*$-polynomial, acting from $\mathbb{C}^n$ to $\mathbb{C},$ can be represented as an algebraic combination of some "elementary" symmetric $*$-polynomials. Results of the paper can be used for investigations of algebras, generated by symmetric $*$-polynomials, acting from $\mathbb{C}^n$ to $\mathbb{C}.$


Author(s):  
T. V. Vasylyshyn

We construct the element of the Cartesian square of the complex Banach space L ∞ [ 0,1 ] of all Lebesgue measurable essentially bounded functions on [ 0,1 ] by the predefined values of elementary symmetric polynomials on this element. Results of this work can be applied to the investigation of an algebraic basis of the algebra of continuous symmetric polynomials on the Cartesian square of the complex Banach space L ∞ [ 0,1 ] .


2018 ◽  
Vol 58 (2) ◽  
pp. 118 ◽  
Author(s):  
Christiane Quesne

For applications to quasi-exactly solvable Schrödinger equations in quantum mechanics, we consider the general conditions that have to be satisfied by the coefficients of a second-order differential equation with at most <em>k </em>+ 1 singular points in order that this equation has particular solutions that are <em>n</em>th-degree polynomials. In a first approach, we show that such conditions involve <em>k </em>- 2 integration constants, which satisfy a system of linear equations whose coefficients can be written in terms of elementary symmetric polynomials in the polynomial solution roots whenver such roots are all real and distinct. In a second approach, we consider the functional Bethe ansatz method in its most general form under the same assumption. Comparing the two approaches, we prove that the above-mentioned <em>k </em>- 2 integration constants can be expressed as linear combinations of monomial symmetric polynomials in the roots, associated with partitions into no more than two parts. We illustrate these results by considering a quasi-exactly solvable extension of the Mathews-Lakshmanan nonlinear oscillator corresponding to <em>k </em>= 4.


Sign in / Sign up

Export Citation Format

Share Document