scholarly journals Average case lower bounds on the construction and searching of partial orders

Author(s):  
Harry G. Mairson
2014 ◽  
Vol 91 (1) ◽  
pp. 104-115 ◽  
Author(s):  
SUREEPORN CHAOPRAKNOI ◽  
TEERAPHONG PHONGPATTANACHAROEN ◽  
PONGSAN PRAKITSRI

AbstractHiggins [‘The Mitsch order on a semigroup’, Semigroup Forum 49 (1994), 261–266] showed that the natural partial orders on a semigroup and its regular subsemigroups coincide. This is why we are interested in the study of the natural partial order on nonregular semigroups. Of particular interest are the nonregular semigroups of linear transformations with lower bounds on the nullity or the co-rank. In this paper, we determine when they exist, characterise the natural partial order on these nonregular semigroups and consider questions of compatibility, minimality and maximality. In addition, we provide many examples associated with our results.


1995 ◽  
Vol 05 (02) ◽  
pp. 275-280 ◽  
Author(s):  
BEATE BOLLIG ◽  
MARTIN HÜHNE ◽  
STEFAN PÖLT ◽  
PETR SAVICKÝ

For circuits the expected delay is a suitable measure for the average case time complexity. In this paper, new upper and lower bounds on the expected delay of circuits for disjunction and conjunction are derived. The circuits presented yield asymptotically optimal expected delay for a wide class of distributions on the inputs even when the parameters of the distribution are not known in advance.


2002 ◽  
Vol 16 (1) ◽  
pp. 85-100
Author(s):  
Nicole Bäuerle ◽  
Anja Houdek

We investigate the performance of channel assignment policies for cellular networks. The networks are given by an interference graph which describes the reuse constraints for the channels. In the first part, we derive lower bounds on the expected (weighted) number of blocked calls under any channel assignment policy over finite time intervals as well as in the average case. The lower bounds are solutions of deterministic control problems. As far as the average case is concerned, the control problem can be replaced by a linear program. In the second part, we consider the cellular network in the limit, when the number of available channels as well as the arrival intensities are linearly increased. We show that the network obeys a functional law of large numbers and that a fixed channel assignment policy which can be computed from a linear program is asymptotically optimal. Special networks like fully connected and star networks are considered.


2015 ◽  
Vol 159 (1) ◽  
pp. 125-151
Author(s):  
DAVID ALDOUS ◽  
TAMAR LANDO

AbstractConsider a network linking the points of a rate-1 Poisson point process on the plane. Write Ψave(s) for the minimum possible mean length per unit area of such a network, subject to the constraint that the route-length between every pair of points is at moststimes the Euclidean distance. We give upper and lower bounds on the function Ψave(s), and on the analogous “worst-case” function Ψworst(s) where the point configuration is arbitrary subject to average density one per unit area. Our bounds are numerically crude, but raise the question of whether there is an exponent α such that each function has Ψ(s) ≍ (s− 1)−αass↓ 1.


1998 ◽  
Vol 28 (2) ◽  
pp. 433-446 ◽  
Author(s):  
William Evans ◽  
Nicholas Pippenger

2008 ◽  
Vol 4 (3) ◽  
pp. 1-17 ◽  
Author(s):  
Laurent Alonso ◽  
Edward M. Reingold
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document