interference graph
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jinsong Gui ◽  
Fujian Cai

The unmanned aerial vehicle- (UAV-) assisted sub-6 GHz disaster relief networks cannot meet high-speed transmission requirements. In this paper, the millimeter wave (mmWave) frequency band is combined with the sub-6 GHz frequency band to build a high-speed UAV-assisted disaster relief network. However, the high propagation path loss of mmWave signals usually needs to be compensated by beamforming, where the ground-facing beam of each UAV is the desired receiving beam of ground user information. The different channels need to be allocated to a single UAV so that this kind of beam can be used simultaneously by different ground users to communicate with this UAV. Also, the other UAVs should reuse these channels as much as possible to save spectrum resources. In this paper, the beamforming training (BFT) mechanism is firstly used to obtain the signal-to-noise ratio (SNR) values of all possible links between ground terminals and UAVs, which are used to estimate these links’ energy efficiency. Then, an interference graph construction algorithm is proposed to identify the links that cannot be used simultaneously in the same channel according to the system energy efficiency. Finally, an iterative channel allocation algorithm is designed to allocate new channels to eliminate the edges of the interference graph, so that the links obtained by the BFT process can be used simultaneously as much as possible under the constraint of the number of channels. The simulation results show that our proposed scheme can achieve the shorter average convergence time, the higher data rate (or the lower data loss rate), and the higher energy efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Canyun Xiong ◽  
Shiyong Chen ◽  
Liang Li ◽  
Yucheng Wu

A massive multiple-input multiple-output (MIMO) system uses a large number of antennas in the base station (BS) to serve multiple users, which significantly improves the capacity of the system. However, in time division duplex (TDD) mode, the pilot contamination (PC) is inevitable due to the multiplexing of pilots. This paper proposed a pilot assignment based on graph coloring and location information (GC-LI) to improve the performance of users. Specifically, based on graph coloring, the proposed GC-LI algorithm combines location information like the angle of arrival (AoA), distance, and correlation to construct an interference graph. Then, we calculate the interference between any two users and use the postprocessing discrete Fourier transform (DFT) filtering process to effectively distinguish the users with nonoverlapping AoAs. Finally, according to the interference graph, the GC-LI algorithm is proposed to mitigate the intercell interference (ICI) between users with the same pilot by assigning different pilots to connected users with high ICI metrics based on some regulation. Simulation results show that the GC-LI algorithm is suitable for various types of cells. In addition, compared with the existing pilot assignment algorithms based on graph coloring, users’ average signal-to-interference-plus-noise ratio (SINR) and uplink achievable sum rate (ASR) are significantly improved.


2021 ◽  
Author(s):  
Saniya Zafar ◽  
sobia Jangsher ◽  
Arafat Al-Dweik

The deployment of mobile-Small cells (mScs) is widely adopted to intensify the quality-of-service (QoS) in high mobility vehicles. However, the rapidly varying interference patterns among densely deployed mScs make the resource allocation (RA) highly challenging. In such scenarios, RA problem needs to be solved nearly in real-time, which can be considered as drawback for most existing RA algorithms. To overcome this constraint and solve the RA problem efficiently, we use deep learning (DL) in this work due to its ability to leverage the historical data in RA problem and to deal with computationally expensive tasks offline. More specifically, this paper considers the RA problem in vehicular environment comprising of city buses, where DL is explored for optimization of network performance. Simulation results reveal that RA in a network using Long Short-Term Memory (LSTM) algorithm outperforms other machine learning (ML) and DL-based RA mechanisms. Moreover, RA using LSTM provides less accurate results as compared to existing Time Interval Dependent Interference Graph (TIDIG)-based, and Threshold Percentage Dependent Interference Graph (TPDIG)-based RA but shows improved results when compared to RA using Global Positioning System Dependent Interference Graph (GPSDIG). However, the proposed scheme is computationally less expensive in comparison with TIDIG and TPDIG-based algorithms.


2021 ◽  
Author(s):  
Saniya Zafar ◽  
sobia Jangsher ◽  
Arafat Al-Dweik

The deployment of mobile-Small cells (mScs) is widely adopted to intensify the quality-of-service (QoS) in high mobility vehicles. However, the rapidly varying interference patterns among densely deployed mScs make the resource allocation (RA) highly challenging. In such scenarios, RA problem needs to be solved nearly in real-time, which can be considered as drawback for most existing RA algorithms. To overcome this constraint and solve the RA problem efficiently, we use deep learning (DL) in this work due to its ability to leverage the historical data in RA problem and to deal with computationally expensive tasks offline. More specifically, this paper considers the RA problem in vehicular environment comprising of city buses, where DL is explored for optimization of network performance. Simulation results reveal that RA in a network using Long Short-Term Memory (LSTM) algorithm outperforms other machine learning (ML) and DL-based RA mechanisms. Moreover, RA using LSTM provides less accurate results as compared to existing Time Interval Dependent Interference Graph (TIDIG)-based, and Threshold Percentage Dependent Interference Graph (TPDIG)-based RA but shows improved results when compared to RA using Global Positioning System Dependent Interference Graph (GPSDIG). However, the proposed scheme is computationally less expensive in comparison with TIDIG and TPDIG-based algorithms.


2020 ◽  
Vol 7 (3) ◽  
pp. 2137-2151
Author(s):  
Jiaqi Cao ◽  
Tao Peng ◽  
Xin Liu ◽  
Weiguo Dong ◽  
Ran Duan ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 386 ◽  
Author(s):  
Raya Majid Alsharfa ◽  
Saleem Latteef Mohammed ◽  
Sadik Kamel Gharghan ◽  
Imran Khan ◽  
Bong Jun Choi

As more and more mobile multimedia services are produced, end users are increasingly demanding access to high-speed, low-latency mobile communication networks. Among them, device-to-device (D2D) communication does not need the data to be forwarded through the base station relay but allows the two mobile devices adjacent to each other to establish a direct local link under control of the base station. This flexible communication method reduces the processing bottlenecks and blind spots of the base station and can be widely used in dense user communication scenarios such as transportation systems. Aiming at the problem of high energy consumption and improved quality of service demands by the D2D users, this paper proposes a new scheme to effectively improve the user fairness and satisfaction based on the user grouping into clusters. The main idea is to create the interference graph between the D2D users which is based on the graph coloring theory and constructs the color lists of the D2D users while cellular users’ requirements are guaranteed. Finally, those D2D users who can share the same channel are grouped in the same cluster. Simulation results show that the proposed scheme outperforms the existing schemes and effectively improve system performance.


Sign in / Sign up

Export Citation Format

Share Document