2011 ◽  
Vol 21 (01) ◽  
pp. 31-47 ◽  
Author(s):  
NOEL LOPES ◽  
BERNARDETE RIBEIRO

The Graphics Processing Unit (GPU) originally designed for rendering graphics and which is difficult to program for other tasks, has since evolved into a device suitable for general-purpose computations. As a result graphics hardware has become progressively more attractive yielding unprecedented performance at a relatively low cost. Thus, it is the ideal candidate to accelerate a wide variety of data parallel tasks in many fields such as in Machine Learning (ML). As problems become more and more demanding, parallel implementations of learning algorithms are crucial for a useful application. In particular, the implementation of Neural Networks (NNs) in GPUs can significantly reduce the long training times during the learning process. In this paper we present a GPU parallel implementation of the Back-Propagation (BP) and Multiple Back-Propagation (MBP) algorithms, and describe the GPU kernels needed for this task. The results obtained on well-known benchmarks show faster training times and improved performances as compared to the implementation in traditional hardware, due to maximized floating-point throughput and memory bandwidth. Moreover, a preliminary GPU based Autonomous Training System (ATS) is developed which aims at automatically finding high-quality NNs-based solutions for a given problem.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. S425-S436
Author(s):  
Martin Sarajaervi ◽  
Henk Keers

In seismic data processing, the amplitude loss caused by attenuation should be taken into account. The basis for this is provided by a 3D attenuation model described by the quality factor [Formula: see text], which is used in viscoelastic modeling and imaging. We have accomplished viscoelastic modeling and imaging using ray theory and the ray-Born approximation. This makes it possible to take [Formula: see text] into account using complex-valued and frequency-dependent traveltimes. We have developed a unified parallel implementation for modeling and imaging in the frequency domain and carried out the numerical integration on a graphics processing unit. A central part of the implementation is an efficient technique for computing large integrals. We applied the integration method to the 3D SEG/EAGE overthrust model to generate synthetic seismograms and imaging results. The attenuation effects are accurately modeled in the seismograms and compensated for in the imaging algorithm. The results indicate a significant improvement in computational efficiency compared to a parallel central processing unit baseline.


Sign in / Sign up

Export Citation Format

Share Document