Hybrid Filter-Wrapper Approach for Feature Selection in Deceptive Consumer Review Classification

Author(s):  
Dushyanthi Vidanagama ◽  
Thushari Silva ◽  
Asoka Karunananda
Author(s):  
E. MONTAÑÉS ◽  
J. R. QUEVEDO ◽  
E. F. COMBARRO ◽  
I. DÍAZ ◽  
J. RANILLA

Feature Selection is an important task within Text Categorization, where irrelevant or noisy features are usually present, causing a lost in the performance of the classifiers. Feature Selection in Text Categorization has usually been performed using a filtering approach based on selecting the features with highest score according to certain measures. Measures of this kind come from the Information Retrieval, Information Theory and Machine Learning fields. However, wrapper approaches are known to perform better in Feature Selection than filtering approaches, although they are time-consuming and sometimes infeasible, especially in text domains. However a wrapper that explores a reduced number of feature subsets and that uses a fast method as evaluation function could overcome these difficulties. The wrapper presented in this paper satisfies these properties. Since exploring a reduced number of subsets could result in less promising subsets, a hybrid approach, that combines the wrapper method and some scoring measures, allows to explore more promising feature subsets. A comparison among some scoring measures, the wrapper method and the hybrid approach is performed. The results reveal that the hybrid approach outperforms both the wrapper approach and the scoring measures, particularly for corpora whose features are less scattered over the categories.


Author(s):  
Barak Chizi ◽  
Lior Rokach ◽  
Oded Maimon

Dimensionality (i.e., the number of data set attributes or groups of attributes) constitutes a serious obstacle to the efficiency of most data mining algorithms (Maimon and Last, 2000). The main reason for this is that data mining algorithms are computationally intensive. This obstacle is sometimes known as the “curse of dimensionality” (Bellman, 1961). The objective of Feature Selection is to identify features in the data-set as important, and discard any other feature as irrelevant and redundant information. Since Feature Selection reduces the dimensionality of the data, data mining algorithms can be operated faster and more effectively by using Feature Selection. In some cases, as a result of feature selection, the performance of the data mining method can be improved. The reason for that is mainly a more compact, easily interpreted representation of the target concept. The filter approach (Kohavi , 1995; Kohavi and John ,1996) operates independently of the data mining method employed subsequently -- undesirable features are filtered out of the data before learning begins. These algorithms use heuristics based on general characteristics of the data to evaluate the merit of feature subsets. A sub-category of filter methods that will be refer to as rankers, are methods that employ some criterion to score each feature and provide a ranking. From this ordering, several feature subsets can be chosen by manually setting There are three main approaches for feature selection: wrapper, filter and embedded. The wrapper approach (Kohavi, 1995; Kohavi and John,1996), uses an inducer as a black box along with a statistical re-sampling technique such as cross-validation to select the best feature subset according to some predictive measure. The embedded approach (see for instance Guyon and Elisseeff, 2003) is similar to the wrapper approach in the sense that the features are specifically selected for a certain inducer, but it selects the features in the process of learning.


Sign in / Sign up

Export Citation Format

Share Document