MATLAB based image analysis software for characterization of microstructure materials

Author(s):  
A. Hussain ◽  
A.M. Muad ◽  
I. Ahmad ◽  
C.H. Azhari
Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Shuo Zhou ◽  
Xiujuan Chai ◽  
Zixuan Yang ◽  
Hongwu Wang ◽  
Chenxue Yang ◽  
...  

Abstract Background Maize (Zea mays L.) is one of the most important food sources in the world and has been one of the main targets of plant genetics and phenotypic research for centuries. Observation and analysis of various morphological phenotypic traits during maize growth are essential for genetic and breeding study. The generally huge number of samples produce an enormous amount of high-resolution image data. While high throughput plant phenotyping platforms are increasingly used in maize breeding trials, there is a reasonable need for software tools that can automatically identify visual phenotypic features of maize plants and implement batch processing on image datasets. Results On the boundary between computer vision and plant science, we utilize advanced deep learning methods based on convolutional neural networks to empower the workflow of maize phenotyping analysis. This paper presents Maize-IAS (Maize Image Analysis Software), an integrated application supporting one-click analysis of maize phenotype, embedding multiple functions: (I) Projection, (II) Color Analysis, (III) Internode length, (IV) Height, (V) Stem Diameter and (VI) Leaves Counting. Taking the RGB image of maize as input, the software provides a user-friendly graphical interaction interface and rapid calculation of multiple important phenotypic characteristics, including leaf sheath points detection and leaves segmentation. In function Leaves Counting, the mean and standard deviation of difference between prediction and ground truth are 1.60 and 1.625. Conclusion The Maize-IAS is easy-to-use and demands neither professional knowledge of computer vision nor deep learning. All functions for batch processing are incorporated, enabling automated and labor-reduced tasks of recording, measurement and quantitative analysis of maize growth traits on a large dataset. We prove the efficiency and potential capability of our techniques and software to image-based plant research, which also demonstrates the feasibility and capability of AI technology implemented in agriculture and plant science.


1990 ◽  
Author(s):  
Karl n. Roth ◽  
Knut Wenzelides ◽  
Guenter Wolf ◽  
Peter Hufnagl

2016 ◽  
Vol 56 (12) ◽  
pp. 2060 ◽  
Author(s):  
Serkan Ozkaya ◽  
Wojciech Neja ◽  
Sylwia Krezel-Czopek ◽  
Adam Oler

The objective of this study was to predict bodyweight and estimate body measurements of Limousin cattle using digital image analysis (DIA). Body measurements including body length, wither height, chest depth, and hip height of cattle were determined both manually (by measurements stick) and by using DIA. Body area was determined by using DIA. The images of Limousin cattle were taken while cattle were standing in a squeeze chute by a digital camera and analysed by image analysis software to obtain body measurements of each animal. While comparing the actual and predicted body measurements, the accuracy was determined as 98% for wither height, 97% for hip height, 94% for chest depth and 90.6% for body length. Regression analysis between body area and bodyweight yielded an equation with R2 of 61.5%. The regression equation, which included all body traits, resulted in an R2 value of 88.7%. The results indicated that DIA can be used for accurate prediction of body measurements and bodyweight of Limousin cattle.


2021 ◽  
Author(s):  
Shuangchang Feng ◽  
Pengzhao Zhang ◽  
Wenhao Shen ◽  
Pengbo Liu

2017 ◽  
Vol 6 (4) ◽  
pp. 132
Author(s):  
Marie Caroline Momo Solefack ◽  
Hans Beeckman ◽  
Lucie Felicite Temgoua ◽  
Ghislain Kenguem Kinjouo

The aim of this work was to investigate the possible anatomical changes of Garcinia lucida and Scorodophloeus zenkeri after the removal of their bark. Debarking was done on individuals of each species at 1.30 m from the soil. The wound was rectangular in shape with 30 cm side. There was a follow-up every three months for nine months during which the survival and rate of regeneration of the bark were recorded. A block of cube was cut from the regenerated and intact wood of species for microtomy and microscopy activities. On the cross-section of each wood, vessel features like density and diameter were measured before and after wounding. Semi-automatic measurements were made using the SpectrumSee digital image analysis software. In the wood of the two species, it appeared that the density of the vessels before debarking was significantly comparable to the density after debarking, while the diameter of vessels in the regenerated wood was smaller. The cambial area increased slightly in the rainy season for all species. After nine months all the species started the restoration of their conductive zone. G. lucida heals its wound more rapidly than S. zenkeri.


Author(s):  
J. Vanterpool ◽  
O. J. Ilegbusi ◽  
N. Khatami

This paper describes experimental investigation of thermal and combustion phenomena as well as structure for self-propagating combustion synthesis of porous Ni–Ti intermetallic aimed for structural biomedical application. The objective is to correlate processing conditions with structure for the porous material. Ni–Ti mixture is prepared from elemental powders of Ni and Ti. The mixture is pressed into solid cylindrical samples of 1.1 cm diameter and 2–3 cm length, with initial porosity ranging from 30% to 42%. The samples are preheated to various initial temperatures and ignited from the top surface such that the flame propagates axially downwards. The flame images are recorded with a motion camera as well as the temperature profile. The samples were then cut using a diamond saw in both longitudinal and latitudinal directions. Image analysis software was then used to analyze the porosity distribution in each sample. The porosity distribution was then systematically correlated with the input processing conditions.


Sign in / Sign up

Export Citation Format

Share Document