The Design and Enforcement of a Rule-based Constraint Policy Language for Service Composition

Author(s):  
Wei Wei ◽  
Ting Yu
2011 ◽  
Vol 2 (1) ◽  
pp. 18-35
Author(s):  
Daniel Fitzner

Geoprocessing operations offered via web services provide the means for building complex web-based geospatial applications. Often, certain postconditions such as the spatial reference system, bounding box, schema or quality that hold on the output dataset after the execution of a geoprocessing service are determined and derived from the properties of the inputs passed to the service. Further, geoprocesses often hold preconditions that relate to more than one input, such as the requirement that all inputs must have the same schema. Within current process descriptions for geoprocessing operations, such conditions which we call cross-parameter conditions, can not be explicitly specified. In this paper, the author gives an approach to formalize such cross input-output and cross input parameter conditions in a rule-based language. Further, the author proposes an algorithm for deriving pre- and postconditions for a service composition or workflow out of the pre- and postconditions of the services involved, allowing a more automated handling of workflows in general.


2012 ◽  
Vol 4 (1) ◽  
pp. 16-28 ◽  
Author(s):  
Maria J. Santofimia ◽  
Xavier del Toro ◽  
Felix J. Villanueva ◽  
Jesus Barba ◽  
Francisco Moya ◽  
...  

The incapability to foresee or react to all the events that take place in a specific environment supposes an important handicap for Ambient Intelligence systems, expected to be self-managed, proactive, and goal-driven. Endowing such systems with capabilities to understand and reason about context seems like a promising solution to overcome this hitch. Supported on the service-oriented paradigm, composing rather than combining services provides a reasonable mean to implement versatile systems. This paper describes how systems for Ambient Intelligence can be improved by combining automatic service composition and reasoning capabilities upon a distributed middleware framework.


2013 ◽  
pp. 1619-1637
Author(s):  
Daniel Fitzner

Geoprocessing operations offered via web services provide the means for building complex web-based geospatial applications. Often, certain postconditions such as the spatial reference system, bounding box, schema or quality that hold on the output dataset after the execution of a geoprocessing service are determined and derived from the properties of the inputs passed to the service. Further, geoprocesses often hold preconditions that relate to more than one input, such as the requirement that all inputs must have the same schema. Within current process descriptions for geoprocessing operations, such conditions which we call cross-parameter conditions, can not be explicitly specified. In this paper, the author gives an approach to formalize such cross input-output and cross input parameter conditions in a rule-based language. Further, the author proposes an algorithm for deriving pre- and postconditions for a service composition or workflow out of the pre- and postconditions of the services involved, allowing a more automated handling of workflows in general.


2020 ◽  
Vol 12 (2) ◽  
pp. 23
Author(s):  
Willy Kengne Kungne ◽  
Georges-Edouard Kouamou ◽  
Claude Tangha

The emergence of BPML (Business Process Modeling Language) has favored the development of languages for the composition of services. Process-oriented approaches produce imperative languages, which are rigid to change at run-time because they focus on how the processes should be built. Despite the fact that semantics is introduced in languages to increase their flexibility, dynamism is limited to find services that have disappeared or become defective. They do not offer the possibility to adapt the composite service to execution. Although rules-based languages were introduced, they remain very much dependent on the BPML which is the underlying technology. This article proposes the specification of a rule-based declarative language for the composition of services. It consists of the syntactic categories which make up the concepts of the language and a formal description of the operational semantics that highlights the dynamism, the flexibility and the adaptability of the language thus defined. This paper also presents a verification framework made of a formal aspect and a toolset. The verification framework translates service specifications into Promela for model checking. Then, a validation framework is proposed that translates the verified specifications to the operational system. Finally, a case study is presented.


Sign in / Sign up

Export Citation Format

Share Document