Voltage Regulation in Distribution Systems using Distributed Energy Resources

Author(s):  
Andrew M. Amuna ◽  
Roozbeh Karandeh ◽  
Valentina Cecchi
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 992
Author(s):  
Phi-Hai Trinh ◽  
Il-Yop Chung

Distributed energy resources (DERs), including renewable energy resources (RESs) and electric vehicles (EVs), have a significant impact on distribution systems because they can cause bi-directional power flow in the distribution lines. Thus, the voltage regulation and thermal limits of the distribution system to mitigate from the excessive power generation or consumption should be considered. The focus of this study is on a control strategy for DERs in low-voltage DC microgrids to minimize the operating costs and maintain the distribution voltage within the normal range based on intelligent scheduling of the charging and discharging of EVs, and to take advantage of RESs such as photovoltaic (PV) plants. By considering the time-of-use electricity rates, we also propose a 24-h sliding window to mitigate uncertainties in loads and PV plants in which the output is time-varied and the EV arrival cannot be predicted. After obtaining a request from the EV owner, the proposed optimal DER control method satisfies the state-of-charge level for their next journey. We applied the voltage sensitivity factor obtained from a load-flow analysis to effectively maintain voltage profiles for the overall DC distribution system. The performance of the proposed optimal DER control method was evaluated with case studies and by comparison with conventional methods.


2018 ◽  
Vol 16 (1) ◽  
pp. 126-134 ◽  
Author(s):  
Luis Fernando Grisales ◽  
Oscar Danilo Montoya ◽  
Alejandro Grajales ◽  
Ricardo Alberto Hincapie ◽  
Mauricio Granada

Author(s):  
Ahmed Abu-Siada ◽  
Mohammad A. S. Masoum ◽  
Yasser Alharbi ◽  
Farhad Shahnia ◽  
A .M. Shiddiq Yunus

Microgrids are clusters of distributed energy resources, energy storage systems and loads which are capable of operating in grid-connected as well as in offgrid modes. In the off-grid mode, the energy resources supply the demand while maintaining the voltage and frequency within acceptable limits whereas in the gridconnected mode, the energy resources supply the maximum or nominal power and the network voltage and frequency is maintained by the grid. This chapter first summarizes the structure and control principles of microgrids. It then briefly introduces the structures and control perspectives of distribution static compensators (DSTATCOMs). Finally, some applications of DSTATCOMs are discussed in microgrids. The introduced applications are power quality improvement due to the presence of nonlinear and unbalanced loads, voltage regulation and balancing, and interphase power circulation in the case of the presence of single-phase energy resources with unequal distribution amongst phases. Each application is illustrated by examples, realized in PSCAD/EMTDC.


Sign in / Sign up

Export Citation Format

Share Document