Speed control of linear induction motor considering end-effects compensation using rotor time constant estimation

Author(s):  
Brahim Bessaih ◽  
Abdelkrim Boucheta ◽  
Ismail Khalil Bousserhane ◽  
Abdeldjbar Hazzab ◽  
Pierre Sicard
Author(s):  
F.E. Benmohamed ◽  
I.K. Bousserhane ◽  
A. Kechich ◽  
B. Bessaih ◽  
A. Boucheta

Purpose The end-effects is a well-recognized phenomenon occurring in the linear induction motor (LIM) which makes the analysis and control of the LIM with good performance very difficult and can cause additional significant non-linearities in the model. So, the compensation of parameters uncertainties due to these effects in the control system is very necessary to get a robust speed control. The purpose of this paper is to propose a new technique of LIM end-effects estimation using the inverse rotor time constant tuning in order to compensate the flux orientation error in the indirect field-oriented control (IFOC) control law. Design/methodology/approach First, the dynamic model of the LIM taking into consideration the end-effects based on Duncan model is derived. Then, the IFOC for LIM speed control with end-effects compensation is derived. Finally, a new technique of LIM end-effects estimation is proposed based on the model reference adaptive system (MRAS) theory using the instantaneous active power and the estimated stator currents vector. These estimated currents are obtained through the solution of LIM state equations. Findings Simulations were carried out in MATLAB/SIMULINK to demonstrate the effectiveness and robustness of LIM speed control with the proposed MRAS inverse rotor time constant tuning to estimate end-effects value. The numerical validation results show that the proposed scheme permits the drive to achieve good dynamic performance, satisfactory for the estimated end-effects of the LIM model and robustness to uncertainties. Originality/value The end-effects causes a drop in the magnetizing, primary and the secondary inductance, requiring a more complex LIM control scheme. This paper presents a new approach of LIM end-effect estimation based on the online adaptation and tuning of the LIM inductances. The proposed scheme use the inverse rotor time constant tuning for end-effects correction in LIM vector control block.


2013 ◽  
Vol 416-417 ◽  
pp. 711-717
Author(s):  
Zhi Hua Zhang ◽  
Li Ming Shi ◽  
Hua Cai ◽  
Yao Hua Li

Linear drive system is widely applied in mid-low speed Maglev, subway transportation, etc. It is composed of two principal components, high power converter and linear induction motor. The converter and motor are designed separately, whole drive system usually use circuit simulation by extracting the mathematical model of linear induction motor. However, LIM has complex electromagnetic field, which needs to considerate the transverse and longitude end effects [1-. This makes LIM mathematical model inaccurate, hard to simulate the real dynamic characteristics of LIM.


2018 ◽  
Vol 7 (4) ◽  
pp. 2028 ◽  
Author(s):  
Ameer L. Saleh ◽  
Badiryah A. Obaid ◽  
Adel A. Obed

This paper contains a proposed controller based on optimal recurrent wavelet neural network (RWNN) with PID controller to control the velocity and hence the stator current as well as the developed thrust of three phase linear induction motor (LIM) which consider the end effects. A vector control represented by indirect field oriented control (IFOC) technique is appointed to attain velocity and flux control for different loading conditions. Moreover, a voltage source inverter based on space vector pulse width modulation (SVPWM) is utilized to give the required stator voltage of LIM. A well-known particle swarm optimization (PSO) algorithm is employed for online tuning of the proposed controller. The computer simulation results show that this controller is effective and gives preferable and rigorous performance compared with a results obtained from conventional wavelet neural network (WNN) and PID controllers.  


Sign in / Sign up

Export Citation Format

Share Document