A novel Fibonacci windows model for finding emerging patterns over online data stream

Author(s):  
Tubagus M. Akhriza ◽  
Yinghua Ma ◽  
Jianhua Li
Author(s):  
Zhengbing Hu ◽  
◽  
Yevgeniy V. Bodyanskiy ◽  
Oleksii K. Tyshchenko ◽  
Olena O. Boiko

Author(s):  
Yanni Li ◽  
Hui Li ◽  
Zhi Wang ◽  
Bing Liu ◽  
Jiangtao Cui ◽  
...  

2019 ◽  
Vol 24 (13) ◽  
pp. 9835-9855 ◽  
Author(s):  
Ricardo de Almeida ◽  
Yee Mey Goh ◽  
Radmehr Monfared ◽  
Maria Teresinha Arns Steiner ◽  
Andrew West

Abstract Most information sources in the current technological world are generating data sequentially and rapidly, in the form of data streams. The evolving nature of processes may often cause changes in data distribution, also known as concept drift, which is difficult to detect and causes loss of accuracy in supervised learning algorithms. As a consequence, online machine learning algorithms that are able to update actively according to possible changes in the data distribution are required. Although many strategies have been developed to tackle this problem, most of them are designed for classification problems. Therefore, in the domain of regression problems, there is a need for the development of accurate algorithms with dynamic updating mechanisms that can operate in a computational time compatible with today’s demanding market. In this article, the authors propose a new bagging ensemble approach based on neural network with random weights for online data stream regression. The proposed method improves the data prediction accuracy as well as minimises the required computational time compared to a recent algorithm for online data stream regression from literature. The experiments are carried out using four synthetic datasets to evaluate the algorithm’s response to concept drift, along with four benchmark datasets from different industries. The results indicate improvement in data prediction accuracy, effectiveness in handling concept drift, and much faster updating times compared to the existing available approach. Additionally, the use of design of experiments as an effective tool for hyperparameter tuning is demonstrated.


2018 ◽  
Vol 7 (4) ◽  
pp. 2166
Author(s):  
Lalit Agrawal ◽  
Dattatraya Adane

Over past decade there has been a significant increase in the volume of online data. Extracting meaningful knowledge from this high volume data is considered as important aspect of research. It is very difficult to completely store full data, because of its perpetual nature. Therefore, analysis is needed while the “data is moving”. This moving data is known as data stream and analyzing it without storing it completely is termed as data stream mining. In recent years, many new techniques have been proposed to overcome the challenges of data stream mining. In this paper, we review the operation of popular streaming algorithms highlighting their strength and weaknesses. We also evaluate the classifiers used in these algorithms against two popular benchmark datasets namely (a) forest cover (forest) and (b) german credit available at UCI repository. Finally, we present our critical observation and draw conclusions on the basis of our analysis.  


Author(s):  
HUI CHEN

Recent emerging applications, such as network traffic analysis, web click stream mining, power consumption measurement, sensor network data analysis, and dynamic tracing of stock fluctuation, call for study of a new kind of data, stream data. Many data stream management systems, prototype systems and software components have been developed to manage the streams or extract knowledge from stream data. Mining frequent patterns is a foundational job for the methods of data mining and knowledge discovery. This paper proposes an algorithm for mining the recent frequent patterns over an online data stream. This method uses RFP-tree to store compactly the recent frequent patterns of a stream. The content of each transaction is incrementally updated into the pattern tree upon its arrival by scanning the stream only once. Moreover, the strategy of conservative computation and time decaying model are used to ensure the correctness of the mining results. Finally, the performance results of extensive simulation show that our work can reduce the average processing time of stream data element and it is superior to other analogous algorithms.


Sign in / Sign up

Export Citation Format

Share Document