concept drift
Recently Published Documents


TOTAL DOCUMENTS

833
(FIVE YEARS 364)

H-INDEX

35
(FIVE YEARS 7)

2022 ◽  
Vol 54 (9) ◽  
pp. 1-38
Author(s):  
Denise Maria Vecino Sato ◽  
Sheila Cristiana De Freitas ◽  
Jean Paul Barddal ◽  
Edson Emilio Scalabrin

Concept drift in process mining (PM) is a challenge as classical methods assume processes are in a steady-state, i.e., events share the same process version. We conducted a systematic literature review on the intersection of these areas, and thus, we review concept drift in PM and bring forward a taxonomy of existing techniques for drift detection and online PM for evolving environments. Existing works depict that (i) PM still primarily focuses on offline analysis, and (ii) the assessment of concept drift techniques in processes is cumbersome due to the lack of common evaluation protocol, datasets, and metrics.


2022 ◽  
Author(s):  
Yufan Zhang ◽  
Honglin Wen ◽  
Qiuwei Wu ◽  
Qian Ai

Prediction intervals (PIs) offer an effective tool for quantifying uncertainty of loads in distribution systems. The traditional central PIs cannot adapt well to skewed distributions, and their offline training fashion is vulnerable to the unforeseen change in future load patterns. Therefore, we propose an optimal PI estimation approach, which is online and adaptive to different data distributions by adaptively determining symmetric or asymmetric probability proportion pairs for quantiles of PIs’ bounds. It relies on the online learning ability of reinforcement learning (RL) to integrate the two online tasks, i.e., the adaptive selection of probability proportion pairs and quantile predictions, both of which are modeled by neural networks. As such, the quality of quantiles-formed PI can guide the selection process of optimal probability proportion pairs, which forms a closed loop to improve PIs’ quality. Furthermore, to improve the learning efficiency of quantile forecasts, a prioritized experience replay (PER) strategy is proposed for online quantile regression processes. Case studies on both load and net load demonstrate that the proposed method can better adapt to data distribution compared with online central PIs method. Compared with offline-trained methods, it obtains PIs with better quality and is more robust against concept drift.


2022 ◽  
Author(s):  
Yufan Zhang ◽  
Honglin Wen ◽  
Qiuwei Wu ◽  
Qian Ai

Prediction intervals (PIs) offer an effective tool for quantifying uncertainty of loads in distribution systems. The traditional central PIs cannot adapt well to skewed distributions, and their offline training fashion is vulnerable to the unforeseen change in future load patterns. Therefore, we propose an optimal PI estimation approach, which is online and adaptive to different data distributions by adaptively determining symmetric or asymmetric probability proportion pairs for quantiles of PIs’ bounds. It relies on the online learning ability of reinforcement learning (RL) to integrate the two online tasks, i.e., the adaptive selection of probability proportion pairs and quantile predictions, both of which are modeled by neural networks. As such, the quality of quantiles-formed PI can guide the selection process of optimal probability proportion pairs, which forms a closed loop to improve PIs’ quality. Furthermore, to improve the learning efficiency of quantile forecasts, a prioritized experience replay (PER) strategy is proposed for online quantile regression processes. Case studies on both load and net load demonstrate that the proposed method can better adapt to data distribution compared with online central PIs method. Compared with offline-trained methods, it obtains PIs with better quality and is more robust against concept drift.


Author(s):  
Yange Sun ◽  
Han Shao ◽  
Bencai Zhang

Ensemble classification is an actively researched paradigm that has received much attention due to increasing real-world applications. The crucial issue of ensemble learning is to construct a pool of base classifiers with accuracy and diversity. In this paper, unlike conventional data-streams oriented ensemble methods, we propose a novel Measure via both Accuracy and Diversity (MAD) instead of one of them to supervise ensemble learning. Based on MAD, a novel online ensemble method called Accuracy and Diversity weighted Ensemble (ADE) effectively handles concept drift in data streams. ADE mainly uses the following three steps to construct a concept-drift oriented ensemble: for the current data window, 1) a new base classifier is constructed based on the current concept when drift detect, 2) MAD is used to measure the performance of ensemble members, and 3) a newly built classifier replaces the worst base classifier. If the newly constructed classifier is the worst one, the replacement has not occurred. Comparing with the state-of-art algorithms, ADE exceeds the current best-related algorithm by 2.38% in average classification accuracy. Experimental results show that the proposed method can effectively adapt to different types of drifts.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jinlin Guo ◽  
Haoran Wang ◽  
Xinwei Li ◽  
Li Zhang

Due to the rise of many fields such as e-commerce platforms, a large number of stream data has emerged. The incomplete labeling problem and concept drift problem of these data pose a huge challenge to the existing stream data classification methods. In this respect, a dynamic stream data classification algorithm is proposed for the stream data. For the incomplete labeling problem, this method introduces randomization and iterative strategy based on the very fast decision tree VFDT algorithm to design an iterative integration algorithm, and the algorithm uses the previous model classification result as the next model input and implements the voting mechanism for new data classification. At the same time, the window mechanism is used to store data and calculate the data distribution characteristics in the window, then, combined with the calculated result and the predicted amount of data to adjust the size of the sliding window. Experiments show the superiority of the algorithm in classification accuracy. The aim of the study is to compare different algorithms to evaluate whether classification model adapts to the current data environment.


Author(s):  
Yujing Chen ◽  
Zheng Chai ◽  
Yue Cheng ◽  
Huzefa Rangwala
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8289
Author(s):  
Shilan S. Hameed ◽  
Ali Selamat ◽  
Liza Abdul Latiff ◽  
Shukor A. Razak ◽  
Ondrej Krejcar ◽  
...  

Cyber-attack detection via on-gadget embedded models and cloud systems are widely used for the Internet of Medical Things (IoMT). The former has a limited computation ability, whereas the latter has a long detection time. Fog-based attack detection is alternatively used to overcome these problems. However, the current fog-based systems cannot handle the ever-increasing IoMT’s big data. Moreover, they are not lightweight and are designed for network attack detection only. In this work, a hybrid (for host and network) lightweight system is proposed for early attack detection in the IoMT fog. In an adaptive online setting, six different incremental classifiers were implemented, namely a novel Weighted Hoeffding Tree Ensemble (WHTE), Incremental K-Nearest Neighbors (IKNN), Incremental Naïve Bayes (INB), Hoeffding Tree Majority Class (HTMC), Hoeffding Tree Naïve Bayes (HTNB), and Hoeffding Tree Naïve Bayes Adaptive (HTNBA). The system was benchmarked with seven heterogeneous sensors and a NetFlow data infected with nine types of recent attack. The results showed that the proposed system worked well on the lightweight fog devices with ~100% accuracy, a low detection time, and a low memory usage of less than 6 MiB. The single-criteria comparative analysis showed that the WHTE ensemble was more accurate and was less sensitive to the concept drift.


Sign in / Sign up

Export Citation Format

Share Document