scholarly journals Multiscale Gaussian Graphical Models and Algorithms for Large-Scale Inference

Author(s):  
Myung Jin Choi ◽  
Alan S. Willsky
2019 ◽  
Author(s):  
Arshdeep Sekhon ◽  
Beilun Wang ◽  
Yanjun Qi

AbstractWe focus on integrating different types of extra knowledge (other than the observed samples) for estimating the sparse structure change between two p-dimensional Gaussian Graphical Models (i.e. differential GGMs). Previous differential GGM estimators either fail to include additional knowledge or cannot scale up to a high-dimensional (large p) situation. This paper proposes a novel method KDiffNet that incorporates Additional Knowledge in identifying Differential Networks via an Elementary Estimator. We design a novel hybrid norm as a superposition of two structured norms guided by the extra edge information and the additional node group knowledge. KDiffNet is solved through a fast parallel proximal algorithm, enabling it to work in large-scale settings. KDiffNet can incorporate various combinations of existing knowledge without re-designing the optimization. Through rigorous statistical analysis we show that, while considering more evidence, KDiffNet achieves the same convergence rate as the state-of-the-art. Empirically on multiple synthetic datasets and one real-world fMRI brain data, KDiffNet significantly outperforms the cutting edge baselines with regard to the prediction performance, while achieving the same level of time cost or less.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-33
Author(s):  
Beilun Wang ◽  
Jiaqi Zhang ◽  
Yan Zhang ◽  
Meng Wang ◽  
Sen Wang

Recently, the Internet of Things (IoT) receives significant interest due to its rapid development. But IoT applications still face two challenges: heterogeneity and large scale of IoT data. Therefore, how to efficiently integrate and process these complicated data becomes an essential problem. In this article, we focus on the problem that analyzing variable dependencies of data collected from different edge devices in the IoT network. Because data from different devices are heterogeneous and the variable dependencies can be characterized into a graphical model, we can focus on the problem that jointly estimating multiple, high-dimensional, and sparse Gaussian Graphical Models for many related tasks (edge devices). This is an important goal in many fields. Many IoT networks have collected massive multi-task data and require the analysis of heterogeneous data in many scenarios. Past works on the joint estimation are non-distributed and involve computationally expensive and complex non-smooth optimizations. To address these problems, we propose a novel approach: Multi-FST. Multi-FST can be efficiently implemented on a cloud-server-based IoT network. The cloud server has a low computational load and IoT devices use asynchronous communication with the server, leading to efficiency. Multi-FST shows significant improvement, over baselines, when tested on various datasets.


2019 ◽  
Author(s):  
Elisa Benedetti ◽  
Nathalie Gerstner ◽  
Maja Pučić-Baković ◽  
Toma Keser ◽  
Karli R. Reiding ◽  
...  

AbstractGlycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, we here quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms (LC-ESI-MS, UHPLC-FLD and MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the ‘Probabilistic Quotient’ method followed by log-transformation, irrespective of the measurement platform.


Biometrics ◽  
2019 ◽  
Vol 75 (4) ◽  
pp. 1288-1298
Author(s):  
Gwenaël G. R. Leday ◽  
Sylvia Richardson

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vincent Bessonneau ◽  
Roy R. Gerona ◽  
Jessica Trowbridge ◽  
Rachel Grashow ◽  
Thomas Lin ◽  
...  

AbstractGiven the complex exposures from both exogenous and endogenous sources that an individual experiences during life, exposome-wide association studies that interrogate levels of small molecules in biospecimens have been proposed for discovering causes of chronic diseases. We conducted a study to explore associations between environmental chemicals and endogenous molecules using Gaussian graphical models (GGMs) of non-targeted metabolomics data measured in a cohort of California women firefighters and office workers. GGMs revealed many exposure-metabolite associations, including that exposures to mono-hydroxyisononyl phthalate, ethyl paraben and 4-ethylbenzoic acid were associated with metabolites involved in steroid hormone biosynthesis, and perfluoroalkyl substances were linked to bile acids—hormones that regulate cholesterol and glucose metabolism—and inflammatory signaling molecules. Some hypotheses generated from these findings were confirmed by analysis of data from the National Health and Nutrition Examination Survey. Taken together, our findings demonstrate a novel approach to discovering associations between chemical exposures and biological processes of potential relevance for disease causation.


Sign in / Sign up

Export Citation Format

Share Document