large scale network
Recently Published Documents


TOTAL DOCUMENTS

640
(FIVE YEARS 182)

H-INDEX

32
(FIVE YEARS 7)

2022 ◽  
Vol 27 (1) ◽  
pp. 1-30
Author(s):  
Mengke Ge ◽  
Xiaobing Ni ◽  
Xu Qi ◽  
Song Chen ◽  
Jinglei Huang ◽  
...  

Brain network is a large-scale complex network with scale-free, small-world, and modularity properties, which largely supports this high-efficiency massive system. In this article, we propose to synthesize brain-network-inspired interconnections for large-scale network-on-chips. First, we propose a method to generate brain-network-inspired topologies with limited scale-free and power-law small-world properties, which have a low total link length and extremely low average hop count approximately proportional to the logarithm of the network size. In addition, given the large-scale applications, considering the modularity of the brain-network-inspired topologies, we present an application mapping method, including task mapping and deterministic deadlock-free routing, to minimize the power consumption and hop count. Finally, a cycle-accurate simulator BookSim2 is used to validate the architecture performance with different synthetic traffic patterns and large-scale test cases, including real-world communication networks for the graph processing application. Experiments show that, compared with other topologies and methods, the brain-network-inspired network-on-chips (NoCs) generated by the proposed method present significantly lower average hop count and lower average latency. Especially in graph processing applications with a power-law and tightly coupled inter-core communication, the brain-network-inspired NoC has up to 70% lower average hop count and 75% lower average latency than mesh-based NoCs.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jinyi Pan ◽  
Qiyuan Peng ◽  
Shuguang Zhan ◽  
Jiaqi Bai

Chinese high-speed railway has implemented large-scale network operation with an urgent need for capacity improvement. The concept of virtual coupling seems to be a promising solution that provides a new operational scenario for high-speed railway, where trains are formed into a cooperative convoy and run synchronously with small train headways. The train-following principles under the virtual coupling signalling are quite different from those under conventional train control systems. Therefore, train headway analysis for different operational scenarios should be carried out to ensure railway safety and evaluate capacity benefits brought by virtual coupling. This paper proposes a potential virtual coupling architecture with reference to ETCS/ERTMS specifications. We compare blocking time models under different train control systems, and eight typical train-following scenarios are investigated for virtual coupling, including train arrival and departure cases. A detailed multiscenario-based train headway analysis is provided based on the microscopic infrastructure of the station and technological characteristics of virtual coupling. All computational outcomes are based on the train dynamic motion model. A comparative analysis of train headways under virtual coupling and CTCS-3 is provided in the case study. Results show that train headways can be substantially reduced under virtual coupling and are related to the station infrastructure layout.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8063
Author(s):  
Alejandro J. del Real ◽  
Andrés Pastor ◽  
Jaime Durán

This paper aims to provide the smart grid research community with an open and accessible general mathematical framework to develop and implement optimal flexibility mechanisms in large-scale network applications. The motivation of this paper is twofold. On the one hand, flexibility mechanisms are currently a hot topic of research, which is aimed to mitigate variation and uncertainty of electricity demand and supply in decentralised grids with a high aggregated share of renewables. On the other hand, a large part of such related research is performed by heuristic methods, which are generally inefficient (such methods do not guarantee optimality) and difficult to extrapolate for different use cases. Alternatively, this paper presents an MPC-based (model predictive control) framework explicitly including a generic flexibility mechanism, which is easy to particularise to specific strategies such as demand response, flexible production and energy efficiency services. The proposed framework is benchmarked with other non-optimal control configurations to better show the advantages it provides. The work of this paper is completed by the implementation of a generic use case, which aims to further clarify the use of the framework and, thus, to ease its adoption by other researchers in their specific flexibility mechanism applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Mahsa Rahimi Siegrist ◽  
Francesco Corman

Disruption in public transport networks has adverse implications for both passengers and service managers. To evaluate the effects of disruptions on passengers’ behaviour, various methods, simulation modules, and mathematical models are widely used. However, such methods included many assumptions for the sake of simplicity. We here use multiagent microsimulation modules to simulate complex real-life scenarios. Aspects that were never explicitly modelled together are the capacity of the network and the effect of disruption to on-board passengers, who might need to alight the disrupted services. In addition, our simulation and developed module provide a framework that can be applied for both transport planning and real-time management of disruption for the large-scale network. We formalize the agent-based assignment problem in capacitated transit networks for disrupted situations, where some information is available about the disruption. We extend a microsimulation environment to quantify precisely the impact and the number of agents directly and indirectly affected by the disruption, respectively, those passengers who cannot perform their trip because of disrupted services (directly affected passengers), and those passengers whose services are not disrupted but experience additional crowding effects (indirectly affected passengers). The outcomes are discussed both from passengers’ perspective and for extracting more general planning and policy recommendations. The modeling and solution approaches are applied to the multimodal public transport system of Zürich, Switzerland. Our results show that different information dissemination strategies have a large impact on direct and indirect effects. By earlier information dissemination, the direct effects get milder but larger in space, and indirect negative effects arise. The scenarios with the least information instead are very strongly affecting few passengers, while the less negative indirect effect for the rest of the network.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042043
Author(s):  
Jiayi Li ◽  
Xiaoqing Zhu

Abstract With the expansion of the application field of robots, the use of eight-legged bionic robots to assist or replace human operations in various complex and extreme terrains is constantly being explored. This paper uses octopus as a bionic object, designs an eight-eccentric wheel walking platform, and studies its dynamics, kinematics and trajectory planning. This paper first investigates the development history and research status of multi-legged robots in many countries, analyzes the shortcomings of octa-legged robots, and proposes improved solutions on this basis. Through the bionic of the octopus structure, the Catia software is used to design and establish a three-dimensional model of the octopus-like eight-eccentric wheel robot. By importing the three-dimensional model into the dynamic analysis software Adams for simulation, after adding constraints, driving, torque and contact force, the various functions of the platform are simulated to obtain linear wheel walking, rotary motion, linear leg walking, the parameters of jumping motion and obstacle-crossing motion are drawn into tables for intuitive analysis, and virtual prototype simulation is used to verify the correctness of the established model and trajectory planning. The research in this paper lays a theoretical foundation for the development and application of this eight-eccentric wheel bionic robot.


Author(s):  
Alejandro J. del Real ◽  
Andrés Pastor ◽  
Jaime Durán

This paper aims to provide the smart grid research community with an open and accessible general mathematical framework to develop and implement optimal flexibility mechanisms in large-scale network applications. The motivation of this paper is twofold. On the one hand, flexibility mechanisms are currently a hot topic of research, which is aimed to mitigate variation and uncertainty of electricity demand and supply in decentralised grids with a high aggregated share of renewables. On the other hand, a large part of such related research is performed by heuristic methods, which are generally inefficient (such methods do not guarantee optimality) and difficult to extrapolate for different use cases. Alternatively, this paper presents an MPC-based (Model Predictive Control) framework explicitly including a generic flexibility mechanism which is easy to particularise to specific strategies such as Demand Response, Flexible Production and Energy Efficiency Services. The proposed framework is benchmarked with other non-optimal control configurations to better show the advantages it provides. The work of this paper is completed by the implementation of a generic use case which aims to further clarify the use of the framework and thus, to ease its adoption by other researchers in their specific flexibility mechanisms applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew R. Gerlach ◽  
Helmet T. Karim ◽  
Joseph Kazan ◽  
Howard J. Aizenstein ◽  
Robert T. Krafty ◽  
...  

AbstractSevere worry is a complex transdiagnostic phenotype independently associated with increased morbidity, including cognitive impairment and cardiovascular diseases. We investigated the neurobiological basis of worry in older adults by analyzing resting state fMRI using a large-scale network-based approach. We collected resting fMRI on 77 participants (>50 years old) with varying worry severity. We computed region-wise connectivity across the default mode network (DMN), anterior salience network, and left executive control network. All 22,366 correlations were regressed on worry severity and adjusted for age, sex, race, education, disease burden, depression, anxiety, rumination, and neuroticism. We employed higher criticism, a second-level method of significance testing for rare and weak features, to reveal the functional connectivity patterns associated with worry. The analysis suggests that worry has a complex, yet distinct signature associated with resting state functional connectivity. Intra-connectivities and inter-connectivities of the DMN comprise the dominant contribution. The anterior cingulate, temporal lobe, and thalamus are heavily represented with overwhelmingly negative association with worry. The prefrontal regions are also strongly represented with a mix of positive and negative associations with worry. Identifying the most salient connections may be useful for targeted interventions for reducing morbidity associated with severe worry in older adults.


2021 ◽  
Author(s):  
Shipeng Chu ◽  
Tuqiao Zhang ◽  
Xinhong Zhou ◽  
Tingchao Yu ◽  
Yu Shao

Abstract Real-time modeling of the water distribution system (WDS) is a critical step for the control and operation of such systems. The nodal water demand as the most important time-varying parameter must be estimated in real-time. The computational burden of nodal water demand estimation is intensive, leading to inefficiency for the modeling of the large-scale network. The Jacobian matrix computation and Hessian matrix inversion are the processes that dominate the main computation time. To address this problem, an approach to shorten the computational time for the real-time demand estimation in the large-scale network is proposed. The approach can efficiently compute the Jacobian matrix based on solving a system of linear equations, and a Hessian matrix inversion method based on matrix partition and Iterative Woodbury-Matrix-Identity Formula is proposed. The developed approach is applied to a large-scale network, of which the number of nodal water demand is 12523, and the number of measurements ranging from 10 to 2000. Results show that the time consumptions of both Jacobian computation and Hessian matrix inversion are significantly shortened compared with the existing approach.


Sign in / Sign up

Export Citation Format

Share Document