New statistic in P-value estimation for anomaly detection

Author(s):  
Jing Qian ◽  
Venkatesh Saligrama
2021 ◽  
Author(s):  
Martin A. Hoffmann ◽  
Louis-Félix Nothias ◽  
Marcus Ludwig ◽  
Markus Fleischauer ◽  
Emily C. Gentry ◽  
...  

Untargeted metabolomics experiments rely on spectral libraries for structure annotation, but these libraries are vastly incomplete; in silico methods search in structure databases but cannot distinguish between correct and incorrect annotations. As biological interpretation relies on accurate structure annotations, the ability to assign confidence to such annotations is a key outstanding problem. We introduce the COSMIC workflow that combines structure database generation, in silico annotation, and a confidence score consisting of kernel density p-value estimation and a Support Vector Machine with enforced directionality of features. In evaluation, COSMIC annotates a substantial number of hits at small false discovery rates, and outperforms spectral library search for this purpose. To demonstrate that COSMIC can annotate structures never reported before, we annotated twelve novel bile acid conjugates; nine structures were confirmed by manual evaluation and two structures using synthetic standards. Second, we annotated and manually evaluated 315 molecular structures in human samples currently absent from the Human Metabolome Database. Third, we applied COSMIC to 17,400 experimental runs and annotated 1,715 structures with high confidence that were absent from spectral libraries.


Biostatistics ◽  
2008 ◽  
Vol 9 (4) ◽  
pp. 601-612 ◽  
Author(s):  
R. Kustra ◽  
X. Shi ◽  
D. J. Murdoch ◽  
C. M. T. Greenwood ◽  
J. Rangrej

2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Theo A Knijnenburg ◽  
Jake Lin ◽  
Hector Rovira ◽  
John Boyle ◽  
Ilya Shmulevich

Author(s):  
Stephen Thomas ◽  
Ankur Patel ◽  
Corey Patrick ◽  
Gary Delhougne

AbstractDespite advancements in surgical technique and component design, implant loosening, stiffness, and instability remain leading causes of total knee arthroplasty (TKA) failure. Patient-specific instruments (PSI) aid in surgical precision and in implant positioning and ultimately reduce readmissions and revisions in TKA. The objective of the study was to evaluate total hospital cost and readmission rate at 30, 60, 90, and 365 days in PSI-guided TKA patients. We retrospectively reviewed patients who underwent a primary TKA for osteoarthritis from the Premier Perspective Database between 2014 and 2017 Q2. TKA with PSI patients were identified using appropriate keywords from billing records and compared against patients without PSI. Patients were excluded if they were < 21 years of age; outpatient hospital discharges; evidence of revision TKA; bilateral TKA in same discharge or different discharges. 1:1 propensity score matching was used to control patients, hospital, and clinical characteristics. Generalized Estimating Equation model with appropriate distribution and link function were used to estimate hospital related cost while logistic regression models were used to estimate 30, 60, and 90 days and 1-year readmission rate. The study matched 3,358 TKAs with PSI with TKA without PSI patients. Mean total hospital costs were statistically significantly (p < 0.0001) lower for TKA with PSI ($14,910; 95% confidence interval [CI]: $14,735–$15,087) than TKA without PSI patients ($16,018; 95% CI: $15,826–$16,212). TKA with PSI patients were 31% (odds ratio [OR]: 0.69; 95% CI: 0.51–0.95; p-value = 0.0218) less likely to be readmitted at 30 days; 35% (OR: 0.65; 95% CI: 0.50–0.86; p-value = 0.0022) less likely to be readmitted at 60 days; 32% (OR: 0.68; 95% CI: 0.53–0.88; p-value = 0.0031) less likely to be readmitted at 90 days; 28% (OR: 0.72; 95% CI: 0.60–0.86; p-value = 0.0004) less likely to be readmitted at 365 days than TKA without PSI patients. Hospitals and health care professionals can use retrospective real-world data to make informed decisions on using PSI to reduce hospital cost and readmission rate, and improve outcomes in TKA patients.


Sign in / Sign up

Export Citation Format

Share Document