scholarly journals Effective Feature Space Reduction with Imbalanced Data for Semantic Concept Detection

Author(s):  
Lin Lin ◽  
Guy Ravitz ◽  
Mei-Ling Shyu ◽  
Shu-Ching Chen
2012 ◽  
Vol 38 (10) ◽  
pp. 1671
Author(s):  
Rui-Jie ZHANG ◽  
Zhi-Gang GUO ◽  
Bi-Cheng LI ◽  
Hao-Lin GAO

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Huaping Guo ◽  
Xiaoyu Diao ◽  
Hongbing Liu

Rotation Forest is an ensemble learning approach achieving better performance comparing to Bagging and Boosting through building accurate and diverse classifiers using rotated feature space. However, like other conventional classifiers, Rotation Forest does not work well on the imbalanced data which are characterized as having much less examples of one class (minority class) than the other (majority class), and the cost of misclassifying minority class examples is often much more expensive than the contrary cases. This paper proposes a novel method called Embedding Undersampling Rotation Forest (EURF) to handle this problem (1) sampling subsets from the majority class and learning a projection matrix from each subset and (2) obtaining training sets by projecting re-undersampling subsets of the original data set to new spaces defined by the matrices and constructing an individual classifier from each training set. For the first method, undersampling is to force the rotation matrix to better capture the features of the minority class without harming the diversity between individual classifiers. With respect to the second method, the undersampling technique aims to improve the performance of individual classifiers on the minority class. The experimental results show that EURF achieves significantly better performance comparing to other state-of-the-art methods.


Author(s):  
Zhiyong Wang ◽  
Dagan Feng

Visual information has been immensely used in various domains such as web, education, health, and digital libraries, due to the advancements of computing technologies. Meanwhile, users realize that it has been more and more difficult to find desired visual content such as images. Though traditional content-based retrieval (CBR) systems allow users to access visual information through query-by-example with low level visual features (e.g. color, shape, and texture), the semantic gap is widely recognized as a hurdle for practical adoption of CBR systems. Wealthy visual information (e.g. user generated visual content) enables us to derive new knowledge at a large scale, which will significantly facilitate visual information management. Besides semantic concept detection, semantic relationship among concepts can also be explored in visual domain, other than traditional textual domain. Therefore, this chapter aims to provide an overview of the state-of-the-arts on discovering semantics in visual domain from two aspects, semantic concept detection and knowledge discovery from visual information at semantic level. For the first aspect, various aspects of visual information annotation are discussed, including content representation, machine learning based annotation methodologies, and widely used datasets. For the second aspect, a novel data driven based approach is introduced to discover semantic relevance among concepts in visual domain. Future research topics are also outlined.


Sign in / Sign up

Export Citation Format

Share Document