Improved Bilateral Filtering for Color Abstraction with Minimal Entropy and Dynamic Local Variance

Author(s):  
Tzu-Hao Fu ◽  
Bor-Shen Lin
2005 ◽  
Vol 08 (02) ◽  
pp. 239-253 ◽  
Author(s):  
PETER CARR ◽  
ALIREZA JAVAHERI

We derive a partial integro differential equation (PIDE) which relates the price of a calendar spread to the prices of butterfly spreads and the functions describing the evolution of the process. These evolution functions are the forward local variance rate and a new concept called the forward local default arrival rate. We then specialize to the case where the only jump which can occur reduces the underlying stock price by a fixed fraction of its pre-jump value. This is a standard assumption when valuing an option written on a stock which can default. We discuss novel strategies for calibrating to a term and strike structure of European options prices. In particular using a few calendar dates, we derive closed form expressions for both the local variance and the local default arrival rate.


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Lars E. Sjöberg

Abstract As the KTH method for geoid determination by combining Stokes integration of gravity data in a spherical cap around the computation point and a series of spherical harmonics suffers from a bias due to truncation of the data sets, this method is based on minimizing the global mean square error (MSE) of the estimator. However, if the harmonic series is increased to a sufficiently high degree, the truncation error can be considered as negligible, and the optimization based on the local variance of the geoid estimator makes fair sense. Such unbiased types of estimators, derived in this article, have the advantage to the MSE solutions not to rely on the imperfectly known gravity signal degree variances, but only the local error covariance matrices of the observables come to play. Obviously, the geoid solution defined by the local least variance is generally superior to the solution based on the global MSE. It is also shown, at least theoretically, that the unbiased geoid solutions based on the KTH method and remove–compute–restore technique with modification of Stokes formula are the same.


Sign in / Sign up

Export Citation Format

Share Document