gravity signal
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 24)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Florian Forster ◽  
Andreas Güntner ◽  
Philippe Jousset ◽  
Marvin Reich ◽  
Benjamin Männel ◽  
...  

AbstractContinuous high-resolution gravimetry is increasingly used to monitor mass distribution changes in volcanic, hydrothermal or other complex geosystems. To quantify the often small target signals, gravity contributions from, e.g. atmospheric mass changes, global and local hydrology should be accounted for. We set up three iGrav superconducting gravity meters for continuous monitoring of the Þeistareykir geothermal field in North Island. Additionally, we installed a set of hydrometeorological sensors at each station for continuous observation of local pressure changes, soil moisture, snow and vertical surface displacement. We show that the contribution of these environmental parameters to the gravity signal does not exceed 10 µGal (1 µGal = 10–8 m s−2), mainly resulting from vertical displacement and snow accumulation. The seasonal gravity contributions (global atmosphere, local and global hydrology) are in the order of ± 2 µGal at each station. Using the environmental observations together with standard gravity corrections for instrumental drift and tidal effects, we comprehensively reduced the iGrav time-series. The gravity residuals were compared to groundwater level changes and geothermal mass flow rates (extraction and injection) of the Þeistareykir power plant. The direct response of the groundwater levels and a time-delayed response of the gravity signal to changes in extraction and injection suggest that the geothermal system is subject to a partially confined aquifer. Our observations indicate that a sustainable “equilibrium” state of the reservoir is reached at extraction flow rates below 240 kg s−1 and injection flow rates below 160 kg s−1. For a first-order approximation of the gravity contributions from extracted and injected masses, we applied a simplified forward gravity model. Comparison to the observed gravity signals suggest that most of the reinjected fluid is drained off through the nearby fracture system.


2021 ◽  
Vol 13 (19) ◽  
pp. 3935
Author(s):  
Luca Massotti ◽  
Christian Siemes ◽  
Günther March ◽  
Roger Haagmans ◽  
Pierluigi Silvestrin

ESA’s Next Generation Gravity Mission (NGGM) is a candidate Mission of Opportunity for ESA–NASA cooperation in the frame of the Mass Change and Geosciences International Constellation (MAGIC). The mission aims at enabling long-term monitoring of the temporal variations of Earth’s gravity field at relatively high temporal (down to 3 days) and increased spatial resolutions (up to 100 km) at longer time intervals. This implies also that time series of GRACE and GRACE-FO can be extended towards a climate series. Such variations carry information about mass change induced by the water cycle and the related mass exchange among atmosphere, oceans, cryosphere, land and solid Earth and will complete our picture of global and climate change. The main observable is the variation of the distance between two satellites measured by a ranging instrument. This is complemented by accelerometers that measure the nongravitational accelerations, which need to be reduced from ranging measurements to obtain the gravity signal. The preferred satellite constellation comprises one satellite pair in a near-polar and another in an inclined circular orbit. The paper focuses on the orbit selection methods for optimizing the spatial sampling for multiple temporal resolutions and then on the methodology for deriving the engineering requirements for the space segment, together with a discussion on the main mission parameters.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yufan Li ◽  
Zhaoguo Deng ◽  
Yasuko Kamisugi ◽  
Zhiren Chen ◽  
Jiajun Wang ◽  
...  

AbstractGravity is a critical environmental factor regulating directional growth and morphogenesis in plants, and gravitropism is the process by which plants perceive and respond to the gravity vector. The cytoskeleton is proposed to play important roles in gravitropism, but the underlying mechanisms are obscure. Here we use genetic screening in Physcomitrella patens, to identify a locus GTRC, that when mutated, reverses the direction of protonemal gravitropism. GTRC encodes a processive minus-end-directed KCHb kinesin, and its N-terminal, C-terminal and motor domains are all essential for transducing the gravity signal. Chimeric analysis between GTRC/KCHb and KCHa reveal a unique role for the N-terminus of GTRC in gravitropism. Further study shows that gravity-triggered normal asymmetric distribution of actin filaments in the tip of protonema is dependent on GTRC. Thus, our work identifies a microtubule-based cellular motor that determines the direction of plant gravitropism via mediating the asymmetric distribution of actin filaments.


2021 ◽  
Author(s):  
Florian Forster ◽  
Andreas Güntner ◽  
Philippe Jousset ◽  
Marvin Reich ◽  
Benjamin Männel ◽  
...  

Abstract Continuous high resolution gravimetry is increasingly used to monitor mass distribution changes in volcanic, hydrothermal or other complex geosystems. To quantify the often small target signals, gravity contributions from, e.g., atmospheric mass changes, global and local hydrology should be accounted for. We set up three iGrav superconducting gravity meters for continuous monitoring of the Þeistareykir geothermal field in North Island. Additionally, we installed a set of hydrometeorological sensors at each station for continuous observation of local pressure changes, soil moisture, snow and vertical surface displacement. We show that the contribution of these environmental parameters to the gravity signal does not exceed 10 µGal (1 µGal = 10-8 m s-2), mainly resulting from vertical displacement and snow accumulation. The seasonal gravity contributions (global atmosphere, local and global hydrology) are in the order of ±2 µGal at each station. Using the environmental observations together with standard gravity corrections for instrumental drift and tidal effects, we comprehensively reduced the iGrav time series. The gravity residuals were compared to groundwater level changes and geothermal mass flow rates (extraction and injection) of the Þeistareykir power plant. The direct response of the groundwater levels and a time-delayed response of the gravity signal to changes in extraction and injection suggest that the geothermal system is subject to a partially confined aquifer. Our observations indicate that a sustainable “equilibrium” state of the reservoir is reached at extraction flow rates below 240 kg s-1 and injection flow rates below 160 kg s-1.


Solid Earth ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 691-711
Author(s):  
Maximilian Lowe ◽  
Jörg Ebbing ◽  
Amr El-Sharkawy ◽  
Thomas Meier

Abstract. In this study, we present an estimate of the gravity signal of the slabs beneath the Alpine mountain belt. Estimates of the gravity effect of the subducting slabs are often omitted or simplified in crustal-scale models. The related signal is calculated here for alternative slab configurations at near-surface height and at a satellite altitude of 225 km. We apply three different modelling approaches in order to estimate the gravity signal from the subducting slab segments: (i) direct conversion of upper mantle seismic velocities to density distribution, which are then forward calculated to obtain the gravity signal; (ii) definition of slab geometries based on seismic crustal thickness and high-resolution upper mantle tomography for two competing slab configurations – the geometries are then forward calculated by assigning a constant density contrast and slab thickness; (iii) accounting for compositional and thermal variations with depth within the predefined slab geometry. Forward calculations predict a gravity signal of up to 40 mGal for the Alpine slab configuration. Significant differences in the gravity anomaly patterns are visible for different slab geometries in the near-surface gravity field. However, different contributing slab segments are not easily separated, especially at satellite altitude. Our results demonstrate that future studies addressing the lithospheric structure of the Alps should have to account for the subducting slabs in order to provide a meaningful representation of the geodynamic complex Alpine area.


2021 ◽  
Author(s):  
Luigi Passarelli ◽  
Mehdi Nikkhoo ◽  
Eleonora Rivalta ◽  
Corine Frischknecht ◽  
Costanza Bonadonna ◽  
...  

<div> <p><span>Lava fountains represent a common eruptive phenomenon at basaltic volcanoes, which consist of jets of fluid lava ejected into the atmosphere from active vents or fissures. They are driven by rapid formation and expansion of gas bubbles during magma ascent. The dynamics of lava fountains is thought to be controlled by the gas accumulation in the foam layer at the top of a shallow magmatic reservoir, which eventually collapses triggering the lava fountaining. Gravity measurements taken from a location close to summit of Mt. Etna during the 2011 lava fountain episodes showed a pre-fountaining decrease of the gravity signal. The interplay between gas accumulation in the foam layer and its subsequent exsolution in the conduit has been interpreted as the mechanism producing the gravity decrease and eventually leading to the foam collapse and onset of the lava fountaining activity. Gravity measurements have proved helpful in recording the earliest phases anticipating the lava fountain episodes and inferring the amount of gas involved. However, more accurate estimates of the accumulating and ascending gas volume and total magma mass require considering the possible effect of non-spherical magma chamber geometries and magma compressibility. </span></p> </div><div> <p><span>Under task 4.4 of the H2020 NEWTON-g project, we are accomplishing a detailed study aimed to simulate the gravity signal produced in the stage prior to a lava fountain episode, through a magma chamber - conduit model. We use a prolate ellipsoidal chamber matching the inferred shape of the shallow chamber active at Mt. Etna during the lava fountain episodes, and calculate the surface gravity changes induced by inflow of new magma into the chamber-conduit system. We use a two-phase magma with fixed amount of gas mass fraction and account for magma compressibility. We find that a realistic chamber shape and magma compressibility play a key role and must be considered to produce realistic gravity changes simulations. We combine our physical model with empirical distributions of recurrence time and eruption size of the past lava fountains at Mt. Etna to stochastically simulate realistic time series of gravity changes. The final goal of this study is to develop a prediction model for the amount of magma and duration of lava fountains at Mt. Etna.</span></p> </div>


2021 ◽  
Author(s):  
Andrea Licciardi ◽  
Quentin Bletery ◽  
Bertrand Rouet-Leduc ◽  
Jean-Paul Ampuero ◽  
Kévin Juhel

<p>Mass redistribution during large earthquakes produces a prompt elasto-gravity signal (PEGS) that travels at the speed of light and can be observed on seismograms before the arrival of P-waves. PEGS carries information about earthquake magnitude and the temporal evolution of seismic moment, therefore it could be used to both improve the accuracy of current early source estimation systems and speed-up early warning. However, PEGS has been detected for only a handful of very large earthquakes so far, and its potential use for operational early warning remains to be established. In this work, we study the timeliness of magnitude estimation for subduction earthquakes in Japan using PEGS waveforms by means of Deep Learning and Bayesian uncertainty analysis. Given the paucity of PEGS observations, we train the model on a database of synthetic seismograms augmented with empirical noise in order to simulate more realistic waveforms. We use about 80 stations from the Japanese F-Net network and from networks with data available through IRIS.</p><p>Under this experimental setup, we find that our model is able to track the moment release for earthquakes with a final Mw above 8.0, with a system latency that depends on the signal-to-noise ratio of PEGS. The application of our model to the Mw=9.1 Tohoku-Oki earthquake shows a latency of about 50 s after which the model is able to track well the evolving Mw of the earthquake. After about 2 minutes from the earthquake origin time, a reliable estimate of its final Mw is obtained. Similar performances in terms of timeliness of final Mw estimation are observed for the relatively smaller Hokkaido earthquake (Mw=8.1) although with higher uncertainty.</p><p>Our results highlight the potential of PEGS to enhance the performance of existing tsunami early warning systems where estimating the magnitude of very large earthquakes within few minutes is vital.</p><p> </p>


2021 ◽  
Author(s):  
Yohai Kaspi ◽  
Eli Galanti ◽  

<div>The atmospheres of the gas giants are dominated by strong alternating east-west zonal flows at the cloud-level. Jupiter’s flows have a significant asymmetry between the northern and southern hemispheres, while on Saturn the wind pattern is more symmetric with a wide eastward flow at the equatorial region, and smaller scale jets extending to high latitudes. How deep these winds penetrate into the planets' interior and what is their latitudinal structure has remained a fundamental open question until recently, when both Juno at Jupiter and Cassini at Saturn enabled addressing these questions, through accurate gravity measurements performed by both spacecraft.</div><div>For Jupiter, the zonal winds at the cloud level have been shown to be closely linked to the asymmetric part of the planet's measured gravity field, implying that the flow extend ~3000  km deep. However, measurements coming from several sources (e.g., Juno microwave radiometer measurements) suggest that in some latitudinal regions the flow below the clouds might be somewhat different from that observed there. Here we use the measured gravity field, both asymmetric and symmetric, to examine which latitudinal range of the observed cloud-level winds is most likely to extend deep below the clouds. We find that the winds between latitude 25S and 25N dominate the wind-induced gravity field, with contribution also coming from the winds at latitudes 25 to 50 north and south. These findings are also consistent with magnetohydrodynamics constraints. We also find, that in order to match the gravity data, the winds must be projected inward in the direction parallel to Jupiter's spin axis, and that the decay of the winds should occur in the radial direction. The Saturn case is less constrained, as the gravity signal is more symmetric and the symmetric part of the gravity field is strongly affected by the internal structure of the planet. Nonetheless, the gravity field implies that the cloud-level winds extend ~9000  km deep and westward flows, which differ somewhat from those at the cloud-level, must exist poleward of the equatorial superrotating region.</div>


2021 ◽  
Vol 8 ◽  
Author(s):  
Orlando Álvarez ◽  
Stefanie Pechuan Canet ◽  
Mario Gimenez ◽  
Andrés Folguera

During the last two decades, space geodesy allowed mapping accurately rupture areas, slip distribution, and seismic coupling by obtaining refined inversion models and greatly improving the study of great megathrust earthquakes. A better understanding of these phenomena involving large areas of hundreds of square kilometers came from the last gravity satellite mission that allowed detecting mass transfer through the Earth interior. In this work, we performed direct modeling of satellite GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) derived gravity gradients up to degree/order N = 200 of the harmonic expansion and then corrected this by the effect of topography. Cutting off the model up to this degree/order allows inferring mass heterogeneities located at an approximate depth of 31 km, just along the plate interface where most (but not all) significant slip occurs. Then, we compared the vertical gravity gradient to well-constrained coseismic slip models for three of the last major earthquakes along the Sunda interface. We analyzed seismic rupture behavior for recent and for historical earthquakes along this subduction margin and the relationship of the degree of interseismic coupling using the gravity signal. From this, we found that strong slip patches occurred along minima gravity gradient lobes and that the maximum vertical displacements were related quantitatively to the gravity-derived signal. The degree of interseismic coupling also presents a good correspondence to the vertical gravity gradient, showing an inverse relationship, with low degrees of coupling over regions of relatively higher density. This along-strike segmentation of the gravity signal agrees with the along-strike seismic segmentation observed from recent and historical earthquakes. The thermally controlled down-dip ending of the locked fault zone along central Sumatra also presented an inverse relationship with the density structure along the forearc inferred using our modeling. From this work, we inferred different mass heterogeneities related to persistent tectonic features along the megathrust and along the marine forearc, which may control strain accumulation and release along the megathrust. Combining these data with geodetical and seismological data could possibly delimit and monitor areas with a higher potential seismic hazard around the world.


Sign in / Sign up

Export Citation Format

Share Document