Finite Time Stabilization of a Perturbed Double Integrator—Part I: Continuous Sliding Mode-Based Output Feedback Synthesis

2011 ◽  
Vol 56 (3) ◽  
pp. 614-618 ◽  
Author(s):  
Yury Orlov ◽  
Yannick Aoustin ◽  
Christine Chevallereau
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Cong-Trang Nguyen ◽  
Yao-Wen Tsai

This study proposes a novel variable structure control (VSC) for the mismatched uncertain systems with unknown time-varying delay. The novel VSC includes the finite-time convergence sliding mode, invariance property, asymptotic stability, and measured output only. A necessary and sufficient condition guaranteeing the existence of sliding surface is given. A novel lemma is established to deal with the control design problem for a wider class of time-delay systems. A suitable reduced-order observer (ROO) is constructed to estimate unmeasured state variables of the systems. A novel finite-time output feedback controller (FTOFC) is investigated, which is based on the ROO tool and the Moore-Penrose inverse technique. Moreover, with the help of this lemma and the proposed FTOFC, restrictions on most existing works are also eliminated. In addition, an asymptotic stability analysis is implemented by means of the feasibility of the linear matrix inequalities (LMIs) and given desirable sliding mode dynamics. Finally, a MATLAB simulation result on a numerical example is performed to show the effectiveness and advantage of the proposed method.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zijun Gao ◽  
Jin Wang ◽  
Yaping Tian

This paper investigates the adaptive output feedback attitude control of a quadrotor. First, a nonsingular terminal sliding-mode variable and auxiliary variable are introduced into a closed-loop structure. Meanwhile, a fuzzy logic system is incorporated into an adaptive algorithm to compensate for the adverse influence caused by lumped disturbances including system uncertainty and external disturbances on the attitude adjustment performance of a quadrotor. Then, a novel finite-time output feedback controller equipped with the saturation suppression algorithm is designed. Rigorous proof shows that the design control strategy ensures the closed-loop system stability and guarantees the attitude of the spacecraft to track desired command signals in finite time. Simulation results are presented to illustrate the performance of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document