Evaluation of Temperature Dependence of Magnetic Field Distributions of Bulk Superconductor Annuli

2016 ◽  
Vol 26 (4) ◽  
pp. 1-4 ◽  
Author(s):  
M. Tomita ◽  
Y. Fukumoto ◽  
A. Ishihara ◽  
T. Akasaka ◽  
H. Ohsaki ◽  
...  
2012 ◽  
Vol 30 ◽  
pp. 245-248
Author(s):  
W.J. Kossler ◽  
Allan J. Greer ◽  
Dale R. Harshman ◽  
C.E. Stronach ◽  
A.C. Shockley ◽  
...  

Author(s):  
G. Gulyamov ◽  
U. I. Erkaboev ◽  
A. G. Gulyamov

The article considers the oscillations of interband magneto-optical absorption in semiconductors with the Kane dispersion law. We have compared the changes in oscillations of the joint density of states with respect to the photon energy for different Landau levels in parabolic and non-parabolic zones. An analytical expression is obtained for the oscillation of the combined density of states in narrow-gap semiconductors. We have calculated the dependence of the maximum photon energy on the magnetic field at different temperatures. A theoretical study of the band structure showed that the magnetoabsorption oscillations decrease with an increase in temperature, and the photon energies nonlinearly depend on a strong magnetic field. The article proposes a simple method for calculating the oscillation of joint density of states in a quantizing magnetic field with the non-quadratic dispersion law. The temperature dependence of the oscillations joint density of states in semiconductors with non-parabolic dispersion law is obtained. Moreover, the article studies the temperature dependence of the band gap in a strong magnetic field with the non-quadratic dispersion law. The method is applied to the research of the magnetic absorption in narrow-gap semiconductors with nonparabolic dispersion law. It is shown that as the temperature increases, Landau levels are washed away due to thermal broadening and density of states turns into a density of states without a magnetic field. Using the mathematical model, the temperature dependence of the density distribution of energy states in strong magnetic fields is considered. It is shown that the continuous spectrum of the density of states, measured at the temperature of liquid nitrogen, at low temperatures turns into discrete Landau levels. Mathematical modeling of processes using experimental values of the continuous spectrum of the density of states makes it possible to calculate discrete Landau levels. We have created the three-dimensional fan chart of magneto optical oscillations of semiconductors with considering for the joint density of energy states. For a nonquadratic dispersion law, the maximum frequency of the absorbed light and the width of the forbidden band are shown to depend nonlinearly on the magnetic field. Modeling the temperature  dependence allowed us to determine the Landau levels in semiconductors in a wide temperature spectrum. Using the proposed model, the experimental results obtained for narrow-gap semiconductors are analyzed. The theoretical results are compared with experimental results.


1967 ◽  
Vol 3 (3) ◽  
pp. 546-551
Author(s):  
S. Ohteru ◽  
H. Kobayashi ◽  
I. Nashiyama

2008 ◽  
Vol 104 (3) ◽  
pp. 033918 ◽  
Author(s):  
Bradley W. Peterson ◽  
Samuel M. Allen ◽  
Robert C. O’Handley

1973 ◽  
Vol 51 (4) ◽  
pp. 491-492 ◽  
Author(s):  
A. N. Chakravarti ◽  
D. P. Parui

The diffusivity–mobility ratio in degenerate semiconductors in the presence of a large magnetic field is found to increase with increasing temperature at a rate which is dependent on temperature at relatively low temperatures. It is also found that, at any given temperature, the ratio is increased by the application of the field.


2021 ◽  
Author(s):  
Elham Sadeghi ◽  
Hamed Rezania

Abstract In this paper, the transport properties of a two-dimensional Lieb lattice that is a line-centered square lattice are investigated in the presence of magnetic field and spin-orbit coupling. Specially, we address the temperature dependence of electrical and thermal conductivities as well as Seebeck coefficient due to spin-orbit interaction. We have exploited Green’s function approach in order to study thermoelectric and transport properties of Lieb lattice in the context of Kane-Mele model Hamiltonian. The results for Seebeck coefficient show the sign of thermopower is positive in the presence of spin-orbit coupling. Also the temperature dependence of transport properties indicates that the increase of spin-orbit coupling leads to decrease thermal conductivity however the decrease of gap 1 parameter causes the reduction of thermal conductivity. There is a peak in temperature dependence of thermal conductivity for all values of magnetic fields and spin-orbit coupling strengths. Both electrical and thermal conductivities increase with increasing the temperature at low amounts of temperature due to the increasing of transition rate of charge carriers and excitation of them to the conduction bands. Also we have studied the temperature dependence of spin susceptibility of Lieb monolayer due to both spin orbit coupling and magnetic field factors in details.


Sign in / Sign up

Export Citation Format

Share Document