energy losses
Recently Published Documents





2022 ◽  
Vol 906 ◽  
pp. 69-76
Tigran Petrosyan

In order to study the effect of temperature changes on the dissipative properties of materials, two approaches are used. The first approach implies introducing some temperature function under the sign of the integral in the heredity theory equation and simultaneously taking into account the dependence of the elastic modulus on temperature. As a result, based on experimental data on the thermal creep of soils, the expression for determining the hysteresis energy losses under the periodic voltage changes was obtained depending on temperature changes.According to the second approach, the expression for determining the hysteresis energy losses under isothermal conditions at different temperatures was obtained by introducing into the heredity theory equation an approximation of the experimental dependences of instantaneous deformation and temperature creep parameters for steel Kh18 N10T.

2022 ◽  
Vol 25 (6) ◽  
pp. 741-752
S. S. Girshin ◽  
E. G. Andreeva ◽  
K. V. Khatsevskiy ◽  
V. M. Trotsenko ◽  
N. A. Melnikov ◽  

The aim is to manage the transmitted reactive power in electrical grids using variable capacitor batteries according to the criterion of minimum energy loss under different annual reactive load schedules and different numbers of variable capacitor sections. The main theoretical relations were obtained by the methods of mathematical modelling and integral calculus using the theory of optimal control. The influence of the power and number of sections in a capacitor battery on energy losses in the grid was estimated using computational experiments. Dependencies for energy losses in a capacitor battery, as well as for reducing energy losses in the grid, were obtained. These expressions are valid for linearized load schedules. It is shown that the dependences of energy losses in a capacitor battery and the reduction of losses in the grid on the section power have inflection points and pass through a maximum. The presence of inflection points is associated with a change in the number of capacitor sections operating throughout the year. The presence of a maximum is explained by the fact that, with an increase in the power of the capacitor battery, its operating time decreases under the complete number of variable sections. It is established that the batteries of static capacitors with two variable sections can reduce energy losses when transmitting reactive power by over 90%. For three- and four-section static capacitors, the loss reduction is close to 100%. The reduction in energy losses increases when approaching maximal levels of annual reactive load. Energy losses in electrical grid systems can be reduced by capacitor batteries with no more than three or four variable sections. In most cases, this can be achieved by two-section capacitor batteries.

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 102
Anișoara-Arleziana Neagu ◽  
Claudia Irina Koncsag

Many models for accurately predicting the performance of gasket plate heat exchangers were developed in the last decades, grouped in three categories: empirical, semi-analytical or theoretical/numerical, with the view to saving materials and energy through correct design of industrial equipment. This work addresses one such model, namely Lévêque correlation modified by Martin and by Dović, which is promising due to the correct assumption of the flow in sine duct channels and the consideration of energy losses caused by flow reversal at plate edges and the flow path changing when entering the chevron angle. This model was validated by our own experimental data under industrial conditions for vegetable oils processing, both in laminar flow (Re = 8–42) and fully developed turbulent flow (Re = 446–1137). Moreover, in this study, particular values for constants/parameters of the model were determined for the corrugation inclination angle relative to vertical direction equal to 30°. Through statistical analysis, this study demonstrates that this particularized form of the generalized Lévêque correlation can be used with confidence.

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 294
Piotr Dudziński ◽  
Aleksander Skurjat

Hydraulic steering systems for mechanical devices, for example, manipulators or vehicle steering systems, should be able to achieve high positioning precision with high energy efficiency. However, this condition is very often not met in practical applications. This is usually due to the stiffness of the hydraulic system being too low. As a result, additional corrections are required to achieve the required positioning precision. Unfortunately, this means additional energy losses in the hydraulic control system. In this study, this problem is presented using the example of a hydraulic steering system for an articulated frame steer vehicle. This hydraulic steering system should provide the required directional stability for road traffic safety reasons. So far, this issue, connected mainly with the harmful phenomenon of so-called vehicle snaking behaviour, has not been solved sufficiently practically. To meet the needs of industrial practice, taking into account the current global state of knowledge and technology, Wrocław University of Science and Technology is performing comprehensive experimental and computational studies on the snaking behaviour of an articulated frame steer wheeled commercial vehicle. The results of these tests and analyses showed that the main cause of problems that lead to the snaking behaviour of this vehicle class is the effective torsional stiffness of the hydraulic steering system. For this reason, a novel mathematical model of the effective torsional stiffness was developed and validated. This model comprehensively took into account all important mechanical and hydraulic factors that affect the stiffness of a hydraulic system, resulting in the examined snaking behaviour. Because of this, it is possible at the design stage to select the optimal parameters of the hydraulic steering system to minimise any adverse influence on the snaking behaviour of articulated frame steer wheeled vehicles. This leads to minimising the number of required corrections and minimising energy losses in this hydraulic steering system. The innovative model presented in the article can be used to optimise positioning accuracy, for example, in manipulators and any mechanical system with hydraulic steering of any system of any mechanical parts.

2021 ◽  
Vol 137 (1) ◽  
Olivier Brunner ◽  
Erk Jensen ◽  
Ivan Karpov ◽  
Eric Montesinos ◽  
Franck Peauger ◽  

AbstractThe RF system is the centrepiece of any future circular lepton collider. In particular, the system is required to support the high intensity beams needed for pushing the luminosity at the lower energy regimes of future energy-frontier circular lepton colliders (e.g. for operation in the Z peak and at the WW threshold). Capturing, storing the beam and replacing energy losses from synchrotron radiation demand low frequency, low shunt resistance cavities, low number of cells and high RF power per cell. Controlling the beam both transversely and longitudinally requires sophisticated beam control and timing systems. Additional RF systems are used to ensure transverse stability (feedback systems) and to increase the luminosity (crab cavities). Operation at high energies (such as the ZH and $${\mathrm{t}{\overline{\mathrm{t}}}}$$ t t ¯ threshold) requires a very large accelerating voltage, since synchrotron radiation leads to significantly higher energy losses per turn which must be compensated. Since the RF system is to be optimised in size and energy efficiency for varying demands for the different operational modes, the spectrum of R&D challenges covers a wide range of technologies.

A. S. Parshin ◽  
Yu. L. Mikhlin ◽  
G. A. Aleksandrova

Mihael Abovich Podrigalo ◽  
Nadegda Mihaelovna Podrigalo ◽  
Georgy Sergeevich Serikov ◽  
Irina Alekseevna Serikova

The use of an electric drive in modern vehicles allows solving a number of problems related to the issues of environmental and energy security of the country. However, this approach imposes a number of practical limitations. Among them there is such a significant factor as the limitation on the stored energy in the traction batteries and, as a consequence, the limitation of the mileage on one charge. One of the ways to solve this problem is to reduce mechanical losses associated with the appearance of resonance phenomena in rotating transmission elements and having an unbalanced mass. Goal. The goal is to assess the influence of the Sommerfeld – Kononenko effect on energy indicators during the transfer of rotation from the electric motor to the drive wheel of an electric vehicle. To achieve this goal, it is necessary to determine the law of motion of the rotor of an electric motor and a car wheel using the energy approach and a model of complex motion. Methodology. To solve the problem of determining the law of rotation of an electric motor rotor, a dynamic model of an eccentric vibrator is adopted. The study takes into account the fluctuations in the angular velocity of the shaft with Hooke's hinge when the shaft axis deviates from horizontal positions. It is proposed to apply an energy approach using a model of complex motion to determine the law of rotation of an electric motor rotor and a wheel. Results. The dependence of the speed of rotation of the wheel of an electric vehicle is determined in accordance with the dynamic model under the conditions of fluctuations in the angular speed of transmission elements with Hooke's hinge when the wheel axis deviates from the horizontal position. Practical value. An energy approach is proposed for finding losses in a complex motion model to determine the law of rotation of an electric motor rotor and a wheel. An analytical dependence of additional energy losses caused by wheel unbalance on vehicle mileage and wheel unbalance is found.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Ayman Agha ◽  
Hani Attar ◽  
Ashish Kr. Luhach

This paper presents an approach to achieve the Economic Loading of Distribution Transformer (ELDT) based on minimizing the active energy loss. The effects of the transformer on-load and no-load losses, load factor (LF), and load loss factor (LSF) on the total energy losses are considered. The adopted technique in this paper consists of two phases, where ELDT is determined analytically in the first phase, and the load profile adequated (LSF) is statistically obtained in the second one. The results declare that the proposed technique is suitable for the shifts system mode of operation such as in industrial plants. Moreover, this paper investigates the effect of the total active and reactive power and energy losses on ELDT. Finally, numerical examples with software analyses are performed as a valuable tool, which supports the decision-makers to decide trustfully the size of the transformer and its capacity (kVA) during the design stage, as well as to determine the economic loading during the operation based on the effective factors, that is, total power, energy losses, and the load profile.

Sign in / Sign up

Export Citation Format

Share Document