scholarly journals Spherical-Harmonic-Domain Feedforward Active Noise Control Using Sparse Decomposition of Reference Signals from Distributed Sensor Arrays

Author(s):  
Yu Maeno ◽  
Yuki Mitsufuji ◽  
Prasanga N. Samarasinghe ◽  
Naoki Murata ◽  
Thushara D. Abhayapala
Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7190
Author(s):  
Zibin Jia ◽  
Xu Zheng ◽  
Quan Zhou ◽  
Zhiyong Hao ◽  
Yi Qiu

This paper proposed a local active control method for the reduction of road noise inside a vehicle cabin. A multichannel simplified hybrid active noise control (sHANC) system was first developed and applied to the rear left seat of a large sport utility vehicle (SUV). The attenuation capability of the sHANC system was investigated through simulations, using reference signals provided by accelerometers on the suspensions and bodywork of the vehicle and microphones on the floor of cabin, respectively. It was shown that compared to the traditional feedforward system, the sHANC system using either vibrational or acoustical reference signals can produce a significant suppression of the narrowband peak noise between 75 and 80 Hz, but the system lost the control capability in a range of 100–500 Hz when the acoustic signals were used as references. To reduce the practical implementation costs while maintaining excellent reduction performance, a modified simplified hybrid ANC (msHANC) system was further proposed, in which combined vibrational and acoustical signals were used as reference signals. The off-line analyses showed that four reference accelerometers can be substituted by ten microphones without compromising attenuation performance, with 3.7 dBA overall noise reduction being achieved. The effect of delays on the reduction performance of msHANC system was also investigated. The result showed that the msHANC system was more sensitive to the delays compared to the sHANC system if using only vibrational reference signals.


2021 ◽  
Vol 263 (4) ◽  
pp. 1945-1953
Author(s):  
Xiaoyi Shen ◽  
Dongyuan Shi ◽  
Woon-Seng Gan ◽  
Santi Peksi

Active noise control (ANC) headphone is widely used to attenuate the noise around human' s ear. The microphone mounted on the conventional ANC headphones collected the mixed reference signals when more than one noise sources are often present in the surrounding. In this case, the uncorrelated noise sources involved in the mixed reference usually deteriorate the noise reduction performance of the ANC headphones. To solve this problem, wireless microphones are proposed to install close to each potential noise source in the environment. The microphones pick up the clean reference signals and transmit them to the ANC controller embedded in the headphones with time-advance wirelessly. Every reference signal selected by a coherence-based-selection algorithm is provided individual control filter in each ear. Each control filter updated by using a single clean reference offers better noise reduction performance for ANC headphones. Furthermore, numerical simulations and real-time experiment results in this paper demonstrate the improvement of the proposed method compared with conventional ANC headphones.


Sign in / Sign up

Export Citation Format

Share Document