A Low-Power Graph Convolutional Network Processor With Sparse Grouping for 3D Point Cloud Semantic Segmentation in Mobile Devices

Sangjin Kim ◽  
Sangyeob Kim ◽  
Juhyoung Lee ◽  
Hoi-Jun Yoo
2021 ◽  
Vol 13 (5) ◽  
pp. 1003
Nan Luo ◽  
Hongquan Yu ◽  
Zhenfeng Huo ◽  
Jinhui Liu ◽  
Quan Wang ◽  

Semantic segmentation of the sensed point cloud data plays a significant role in scene understanding and reconstruction, robot navigation, etc. This work presents a Graph Convolutional Network integrating K-Nearest Neighbor searching (KNN) and Vector of Locally Aggregated Descriptors (VLAD). KNN searching is utilized to construct the topological graph of each point and its neighbors. Then, we perform convolution on the edges of constructed graph to extract representative local features by multiple Multilayer Perceptions (MLPs). Afterwards, a trainable VLAD layer, NetVLAD, is embedded in the feature encoder to aggregate the local and global contextual features. The designed feature encoder is repeated for multiple times, and the extracted features are concatenated in a jump-connection style to strengthen the distinctiveness of features and thereby improve the segmentation. Experimental results on two datasets show that the proposed work settles the shortcoming of insufficient local feature extraction and promotes the accuracy (mIoU 60.9% and oAcc 87.4% for S3DIS) of semantic segmentation comparing to existing models.

2021 ◽  
pp. 403-414
Sheng Liu ◽  
Dingda Li ◽  
Wenhao Huang ◽  
Yifeng Cao ◽  
Shengyong Chen

A. Murtiyoso ◽  
C. Lhenry ◽  
T. Landes ◽  
P. Grussenmeyer ◽  
E. Alby

Abstract. The task of semantic segmentation is an important one in the context of 3D building modelling. Indeed, developments in 3D generation techniques have rendered the point cloud ubiquitous. However pure data acquisition only captures geometric information and semantic classification remains to be performed, often manually, in order to give a tangible sense to the 3D data. Recently progress in computing power also opened the way for massive application of deep learning methods, including for semantic segmentation purposes. Although well established in the processing of 2D images, deep learning solutions remain an open question for 3D data. In this study, we aim to benefit from the vastly more developed 2D semantic segmentation by performing transfer learning on a photogrammetric orthoimage. The neural network was trained using labelled and rectified images of building façades. Another programme was then written to permit the passage between 2D orthoimage and 3D point cloud. Results show that the approach worked well and presents an alternative to help the automation process for point cloud semantic segmentation, at least in the case of photogrammetric data.

Romain Cazorla ◽  
Line Poinel ◽  
Panagiotis Papadakis ◽  
Cédric Buche

Point cloud acquisition techniques are an essential tool for the digitization of industrial plants, yet the bulk of a designer's work remains manual. A first step to automatize drawing generation is to extract the semantics of the point cloud. Towards this goal, we investigate the use of deep learning to semantically segment oil and gas industrial scenes. We focus on domain characteristics such as high variation of object size, increased concavity and lack of annotated data, which hampers the use of conventional approaches. To address these issues, we advocate the use of synthetic data, adaptive downsampling and context sharing.

2019 ◽  
Vol 55 (20) ◽  
pp. 1088-1090
Jian Lu ◽  
Tong Liu ◽  
Maoxin Luo ◽  
Haozhe Cheng ◽  
Kaibing Zhang

Sign in / Sign up

Export Citation Format

Share Document