A Two-Phase Test Sample Sparse Representation Method for Use With Face Recognition

2011 ◽  
Vol 21 (9) ◽  
pp. 1255-1262 ◽  
Author(s):  
Yong Xu ◽  
D. Zhang ◽  
Jian Yang ◽  
Jing-Yu Yang
Author(s):  
Zhonghua Liu ◽  
Jiexin Pu ◽  
Yong Qiu ◽  
Moli Zhang ◽  
Xiaoli Zhang ◽  
...  

Sparse representation is a new hot technique in recent years. The two-phase test sample sparse representation method (TPTSSR) achieved an excellent performance in face recognition. In this paper, a kernel two-phase test sample sparse representation method (KTPTSSR) is proposed. Firstly, the input data are mapped into an implicit high-dimensional feature space by a nonlinear mapping function. Secondly, the data are analyzed by means of the TPTSSR method in the feature space. If an appropriate kernel function and the corresponding kernel parameter are selected, a test sample can be accurately represented as the linear combination of the training data with the same label information of the test sample. Therefore, the proposed method could have better recognition performance than TPTSSR. Experiments on the face databases demonstrate the effectiveness of our methods.


2013 ◽  
Vol 41 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Zhonghua Liu ◽  
Jiexin Pu ◽  
Meiyu Xu ◽  
Yong Qiu

2012 ◽  
Vol 24 (3-4) ◽  
pp. 513-519 ◽  
Author(s):  
Deyan Tang ◽  
Ningbo Zhu ◽  
Fu Yu ◽  
Wei Chen ◽  
Ting Tang

2017 ◽  
Vol 17 (02) ◽  
pp. 1750007 ◽  
Author(s):  
Chunwei Tian ◽  
Guanglu Sun ◽  
Qi Zhang ◽  
Weibing Wang ◽  
Teng Chen ◽  
...  

Collaborative representation classification (CRC) is an important sparse method, which is easy to carry out and uses a linear combination of training samples to represent a test sample. CRC method utilizes the offset between representation result of each class and the test sample to implement classification. However, the offset usually cannot well express the difference between every class and the test sample. In this paper, we propose a novel representation method for image recognition to address the above problem. This method not only fuses sparse representation and CRC method to improve the accuracy of image recognition, but also has novel fusion mechanism to classify images. The implementations of the proposed method have the following steps. First of all, it produces collaborative representation of the test sample. That is, a linear combination of all the training samples is first determined to represent the test sample. Then, it gets the sparse representation classification (SRC) of the test sample. Finally, the proposed method respectively uses CRC and SRC representations to obtain two kinds of scores of the test sample and fuses them to recognize the image. The experiments of face recognition show that the combination of CRC and SRC has satisfactory performance for image classification.


Author(s):  
Shuhuan Zhao

Face recognition (FR) is a hotspot in pattern recognition and image processing for its wide applications in real life. One of the most challenging problems in FR is single sample face recognition (SSFR). In this paper, we proposed a novel algorithm based on nonnegative sparse representation, collaborative presentation, and probabilistic graph estimation to address SSFR. The proposed algorithm is named as Nonnegative Sparse Probabilistic Estimation (NNSPE). To extract the variation information from the generic training set, we first select some neighbor samples from the generic training set for each sample in the gallery set and the generic training set can be partitioned into some reference subsets. To make more meaningful reconstruction, the proposed method adopts nonnegative sparse representation to reconstruct training samples, and according to the reconstruction coefficients, NNSPE computes the probabilistic label estimation for the samples of the generic training set. Then, for a given test sample, collaborative representation (CR) is used to acquire an adaptive variation subset. Finally, the NNSPE classifies the test sample with the adaptive variation subset and probabilistic label estimation. The experiments on the AR and PIE verify the effectiveness of the proposed method both in recognition rates and time cost.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jiajia Liu ◽  
Bailin Li ◽  
Ying Xiong ◽  
Biao He ◽  
Li Li

The detection of fastener defects is an important task for ensuring the safety of railway traffic. The earlier automatic inspection systems based on computer vision can detect effectively the completely missing fasteners, but they have weaker ability to recognize the partially worn ones. In this paper, we propose a method for detecting both partly worn and completely missing fasteners, the proposed algorithm exploits the first and second symmetry sample of original testing fastener image and integrates them for improved representation-based fastener recognition. This scheme is simple and computationally efficient. The underlying rationales of the scheme are as follows: First, the new virtual symmetrical images really reflect some possible appearance of the fastener; then the integration of two judgments of the symmetrical sample for fastener recognition can somewhat overcome the misclassification problem. Second, the improved sparse representation method discarding the training samples that are “far” from the test sample and uses a small number of samples that are “near” to the test sample to represent the test sample, so as to perform classification and it is able to reduce the side-effect of the error identification problem of the original fastener image. The experimental results show that the proposed method outperforms state-of-the-art fastener recognition methods.


Sign in / Sign up

Export Citation Format

Share Document