kernel parameter
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 31)

H-INDEX

10
(FIVE YEARS 1)

Stats ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Felix Mbuga ◽  
Cristina Tortora

Cluster analysis seeks to assign objects with similar characteristics into groups called clusters so that objects within a group are similar to each other and dissimilar to objects in other groups. Spectral clustering has been shown to perform well in different scenarios on continuous data: it can detect convex and non-convex clusters, and can detect overlapping clusters. However, the constraint on continuous data can be limiting in real applications where data are often of mixed-type, i.e., data that contains both continuous and categorical features. This paper looks at extending spectral clustering to mixed-type data. The new method replaces the Euclidean-based similarity distance used in conventional spectral clustering with different dissimilarity measures for continuous and categorical variables. A global dissimilarity measure is than computed using a weighted sum, and a Gaussian kernel is used to convert the dissimilarity matrix into a similarity matrix. The new method includes an automatic tuning of the variable weight and kernel parameter. The performance of spectral clustering in different scenarios is compared with that of two state-of-the-art mixed-type data clustering methods, k-prototypes and KAMILA, using several simulated and real data sets.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012003
Author(s):  
Xuguang Li ◽  
Liyou Fu

Abstract The penalty parameter (c) and kernel parameter (g) contained in Support Vector Machine (SVM) cannot be adaptively selected according to actual samples, which results in low classification accuracy and slow convergence speed. A novel sparrow search algorithm was used to optimize the parameters of SVM classifier. Firstly, an improved ensemble empirical mode decomposition (MEEMD) method was used to decompose non-stationary and nonlinear vibration signals, and the eigenmode function (IMF) was obtained by removing abnormal signals from the original signals through permutation entropy, and the sample entropy was extracted. Finally, a fault diagnosis model based on SSA-SVM is constructed, and the high recognition rate and effectiveness of this method are proved by simulation and experimental data analysis.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2115
Author(s):  
Chengcheng Chen ◽  
Xianchang Wang ◽  
Chengwen Wu ◽  
Majdi Mafarja ◽  
Hamza Turabieh ◽  
...  

Soil erosion control is a complex, integrated management process, constructed based on unified planning by adjusting the land use structure, reasonably configuring engineering, plant, and farming measures to form a complete erosion control system, while meeting the laws of soil erosion, economic and social development, and ecological and environmental security. The accurate prediction and quantitative forecasting of soil erosion is a critical reference indicator for comprehensive erosion control. This paper applies a new swarm intelligence optimization algorithm to the soil erosion classification and prediction problem, based on an enhanced moth-flame optimizer with sine–cosine mechanisms (SMFO). It is used to improve the exploration and detection capability by using the positive cosine strategy, meanwhile, to optimize the penalty parameter and the kernel parameter of the kernel extreme learning machine (KELM) for the rainfall-induced soil erosion classification prediction problem, to obtain more-accurate soil erosion classifications and the prediction results. In this paper, a dataset of the Vietnam Son La province was used for the model evaluation and testing, and the experimental results show that this SMFO-KELM method can accurately predict the results, with significant advantages in terms of classification accuracy (ACC), Mathews correlation coefficient (MCC), sensitivity (sensitivity), and specificity (specificity). Compared with other optimizer models, the adopted method is more suitable for the accurate classification of soil erosion, and can provide new solutions for natural soil supply capacity analysis, integrated erosion management, and environmental sustainability judgment.


Author(s):  
Annu Dhankhar ◽  
Sapna Juneja ◽  
Abhinav Juneja ◽  
Vikram Bali

Medical data analysis is being recognized as a field of enormous research possibilities due to the fact there is a huge amount of data available and prediction in initial stage may save patient lives with timely intervention. With machine learning, a particular algorithm may be created through which any disease may be predicted well in advance on the basis of its feature sets or its symptoms can be detected. With respect to this research work, heart disease will be predicted with support vector machine that falls under the category of supervised machine learning algorithm. The main idea of this study is to focus on the significance of parameter tuning to elevate the performance of classifier. The results achieved were then compared with normal classifier SVM before tuning the parameters. Results depict that the hyperparameters tuning enhances the performance of the model. Finally, results were calculated by using various validation metrics.


2021 ◽  
Vol 11 (11) ◽  
pp. 4996
Author(s):  
Gang Yao ◽  
Yunce Wang ◽  
Mohamed Benbouzid ◽  
Mourad Ait-Ahmed

In this paper, a vibration signal-based hybrid diagnostic method, including vibration signal adaptive decomposition, vibration signal reconstruction, fault feature extraction, and gearbox fault classification, is proposed to realize fault diagnosis of general gearboxes. The main contribution of the proposed method is the combining of signal processing, machine learning, and optimization techniques to effectively eliminate noise contained in vibration signals and to achieve high diagnostic accuracy. Firstly, in the study of vibration signal preprocessing and fault feature extraction, to reduce the impact of noise and mode mixing problems on the accuracy of fault classification, Variational Mode Decomposition (VMD) was adopted to realize adaptive signal decomposition and Wolf Grey Optimizer (GWO) was applied to optimize parameters of VMD. The correlation coefficient was subsequently used to select highly correlated Intrinsic Mode Functions (IMFs) to reconstruct the vibration signals. With these re-constructed signals, fault features were extracted by calculating their time domain parameters, energies, and permutation entropies. Secondly, in the study of fault classification, Kernel Extreme Learning Machine (KELM) was adopted and Differential Evolutionary (DE) was applied to search its regularization coefficient and kernel parameter to further improve classification accuracy. Finally, gearbox vibration signals in healthy and faulty conditions were obtained and contrast experiences were conducted to validate the effectiveness of the proposed hybrid fault diagnosis method.


2021 ◽  
Author(s):  
Faizan Ur Rahman ◽  
Soosan Beheshti

Transforming data to feature space using a kernel function can result in better expression of its features, resulting in better separability for some datasets. The parameters of the kernel function govern the structure of data in feature space and need to be optimized simultaneously while also estimating the number of clusters in a dataset. The proposed method denoted by kernel k-Minimum Average Central Error (kernel k-MACE), esti- mates the number of clusters in a dataset while simultaneously clustering the dataset in feature space by finding the optimum value of the Gaussian kernel parameter σk. A cluster initialization technique has also been proposed based on an existing method for k-means clustering. Simulations show that for self-generated datasets with Gaus- sian clusters having 10% - 50% overlap and for real benchmark datasets, the proposed method outperforms multiple state-of-the-art unsupervised clustering methods including k-MACE, the clustering scheme that inspired kernel k-MACE.


2021 ◽  
Author(s):  
Faizan Ur Rahman ◽  
Soosan Beheshti

Transforming data to feature space using a kernel function can result in better expression of its features, resulting in better separability for some datasets. The parameters of the kernel function govern the structure of data in feature space and need to be optimized simultaneously while also estimating the number of clusters in a dataset. The proposed method denoted by kernel k-Minimum Average Central Error (kernel k-MACE), esti- mates the number of clusters in a dataset while simultaneously clustering the dataset in feature space by finding the optimum value of the Gaussian kernel parameter σk. A cluster initialization technique has also been proposed based on an existing method for k-means clustering. Simulations show that for self-generated datasets with Gaus- sian clusters having 10% - 50% overlap and for real benchmark datasets, the proposed method outperforms multiple state-of-the-art unsupervised clustering methods including k-MACE, the clustering scheme that inspired kernel k-MACE.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 527
Author(s):  
Huibin Shi ◽  
Wenlong Fu ◽  
Bailin Li ◽  
Kaixuan Shao ◽  
Duanhao Yang

Rolling bearings act as key parts in many items of mechanical equipment and any abnormality will affect the normal operation of the entire apparatus. To diagnose the faults of rolling bearings effectively, a novel fault identification method is proposed by merging variational mode decomposition (VMD), average refined composite multiscale dispersion entropy (ARCMDE) and support vector machine (SVM) optimized by multistrategy enhanced swarm optimization in this paper. Firstly, the vibration signals are decomposed into different series of intrinsic mode functions (IMFs) based on VMD with the center frequency observation method. Subsequently, the proposed ARCMDE, fusing the superiorities of DE and average refined composite multiscale procedure, is employed to enhance the ability of the multiscale fault-feature extraction from the IMFs. Afterwards, grey wolf optimization (GWO), enhanced by multistrategy including levy flight, cosine factor and polynomial mutation strategies (LCPGWO), is proposed to optimize the penalty factor C and kernel parameter g of SVM. Then, the optimized SVM model is trained to identify the fault type of samples based on features extracted by ARCMDE. Finally, the application experiment and contrastive analysis verify the effectiveness of the proposed VMD-ARCMDE-LCPGWO-SVM method.


Optik ◽  
2021 ◽  
Vol 230 ◽  
pp. 166288
Author(s):  
Xiyuan Chen ◽  
Di Liu ◽  
Yu Zhang ◽  
Xiao Liu ◽  
Yuan Xu ◽  
...  

Author(s):  
Maryam Yalsavar ◽  
Paknoosh Karimaghaei ◽  
Akbar Sheikh-Akbari ◽  
Pancham Shukla ◽  
Peyman Setoodeh

The application of the support vector machine (SVM) classification algorithm to large-scale datasets is limited due to its use of a large number of support vectors and dependency of its performance on its kernel parameter. In this paper, SVM is redefined as a control system and iterative learning control (ILC) method is used to optimize SVM’s kernel parameter. The ILC technique first defines an error equation and then iteratively updates the kernel function and its regularization parameter using the training error and the previous state of the system. The closed loop structure of the proposed algorithm increases the robustness of the technique to uncertainty and improves its convergence speed. Experimental results were generated using nine standard benchmark datasets covering a wide range of applications. Experimental results show that the proposed method generates superior or very competitive results in term of accuracy than those of classical and state-of-the-art SVM based techniques while using a significantly smaller number of support vectors.


Sign in / Sign up

Export Citation Format

Share Document