Real-time classification of transmission line faults based on Maximal Overlap Discrete Wavelet Transform

Author(s):  
F. B. Costa ◽  
B. A. Souza ◽  
N. S. D. Brito
Author(s):  
Y Srinivasa Rao ◽  
G. Ravi Kumar ◽  
G. Kesava Rao

An appropriate fault detection and classification of power system transmission line using discrete wavelet transform and artificial neural networks is performed in this paper. The analysis is carried out by applying discrete wavelet transform for obtained fault phase currents. The work represented in this paper are mainly concentrated on classification of fault and this classification is done based on the obtained energy values after applying discrete wavelet transform by taking this values as an input for the neural network. The proposed system and analysis is carried out in Matlab Simulink.


Author(s):  
KULKARNISAKEKAR SUMANT SUDHIR ◽  
R.P. HASABE

An appropriate method of fault detection and classification of power system transmission line using discrete wavelet transform is proposed in this paper. The detection is carried out by the analysis of the detail coefficients energy of phase currents. Discrete Wavelet Transform (DWT) analysis of the transient disturbance caused as a result of occurrence faults is performed. The work represented in this paper is focused on classification of simple power system faults using the maximum detail coefficient, energy of the signal and the ratio of energy change of each type of simple simulated fault are characteristic in nature and used for distinguishing fault types.


Author(s):  
Y Srinivasa Rao ◽  
G. Ravi Kumar ◽  
G. Kesava Rao

An appropriate fault detection and classification of power system transmission line using discrete wavelet transform and artificial neural networks is performed in this paper. The analysis is carried out by applying discrete wavelet transform for obtained fault phase currents. The work represented in this paper are mainly concentrated on classification of fault and this classification is done based on the obtained energy values after applying discrete wavelet transform by taking this values as an input for the neural network. The proposed system and analysis is carried out in Matlab Simulink.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2184
Author(s):  
Andrea Mannelli ◽  
Francesco Papi ◽  
George Pechlivanoglou ◽  
Giovanni Ferrara ◽  
Alessandro Bianchini

Energy Storage Systems (EES) are key to further increase the penetration in energy grids of intermittent renewable energy sources, such as wind, by smoothing out power fluctuations. In order this to be economically feasible; however, the ESS need to be sized correctly and managed efficiently. In the study, the use of discrete wavelet transform (Daubechies Db4) to decompose the power output of utility-scale wind turbines into high and low-frequency components, with the objective of smoothing wind turbine power output, is discussed and applied to four-year Supervisory Control And Data Acquisition (SCADA) real data from multi-MW, on-shore wind turbines provided by the industrial partner. Two main research requests were tackled: first, the effectiveness of the discrete wavelet transform for the correct sizing and management of the battery (Li-Ion type) storage was assessed in comparison to more traditional approaches such as a simple moving average and a direct use of the battery in response to excessive power fluctuations. The performance of different storage designs was compared, in terms of abatement of ramp rate violations, depending on the power smoothing technique applied. Results show that the wavelet transform leads to a more efficient battery use, characterized by lower variation of the averaged state-of-charge, and in turn to the need for a lower battery capacity, which can be translated into a cost reduction (up to −28%). The second research objective was to prove that the wavelet-based power smoothing technique has superior performance for the real-time control of a wind park. To this end, a simple procedure is proposed to generate a suitable moving window centered on the actual sample in which the wavelet transform can be applied. The power-smoothing performance of the method was tested on the same time series data, showing again that the discrete wavelet transform represents a superior solution in comparison to conventional approaches.


Sign in / Sign up

Export Citation Format

Share Document