Improving Fault Ride-Through Capability of Fixed-Speed Wind Turbine by Using Bridge-Type Fault Current Limiter

2013 ◽  
Vol 28 (2) ◽  
pp. 361-369 ◽  
Author(s):  
M. Firouzi ◽  
G. B. Gharehpetian
Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1696 ◽  
Author(s):  
Md. Rashidul Islam ◽  
Md. Najmul Huda ◽  
Jakir Hasan ◽  
Mohammad Ashraf Hossain Sadi ◽  
Ahmed AbuHussein ◽  
...  

High penetration of Doubly Fed Induction Generator (DFIG) into existing power grid can attribute complex issues as they are very sensitive to the grid faults. In addition, Fault Ride Through (FRT) is one of the main requirements of the grid code for integrating Wind Farms (WFs) into the power grid. In this work, to enhance the FRT capability of the DFIG based WFs, a Bridge-Type Flux Coupling Non-Superconducting Fault Current Limiter (BFC-NSFCL) is proposed. The effectiveness of the proposed BFC-NSFCL is evaluated through performance comparison with that of the Bridge-Type Fault Current Limiter (BFCL) and Series Dynamic Braking Resistor (SDBR). Moreover, a dynamic nonlinear controller is also proposed for controlling the operation of the BFC-NSFCL. Extensive simulations are carried out in the MATLAB/SIMULINK environment for both symmetrical and unsymmetrical temporary as well as permanent faults. Based on the simulation results and different numerical analysis, it is found that the proposed nonlinear controller based BFC-NSFCL is very effective in enhancing the FRT capability of the WF. Also, the BFC-NSFCL outperforms the conventional BFCL and SDBR by maintaining a near-seamless performance during various grid fault situations.


2021 ◽  
Vol 7 (1) ◽  
pp. 29-39
Author(s):  
Roshan Brahmwanshi ◽  
Eknath Borkar

Due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. the variable speed wind turbine using a doubly fed induction generator (DFIG) is becoming a popular concept and thus the modeling of the DFIG based wind turbine and improvement in the transient fault conditions is an important consideration. In this paper, Transient stability improvement has been done by using Superfluous Fault Current Limiter [SFCL]. A new design of SFCL IGBT- Bridge-type SFCL shunted with a variable resistor Rsh has been proposed. Rsh is modeled to decrease the terminal voltage deviation to minimum level by reducing the amount of current at the bus terminal. Comparison of Voltage deviation and current deviation with the resistive type SFCL and IGBT- bridge-type SFCL show considerable decrease in both quantities by using IGBT- bridge-type SFCL. The values of voltage deviation at the bus terminal is 8.223 e-8 % for proposed SFCL which is less than the resistive type SFCL that is, 14.4 e-8 %.  The huge voltage sag has been considerably reduced by reduction of high level of current to 0.0004401 % in IGBT-bridge-Type SFCL from 0.0004624% in resistive type SFCL. Thus proposed SFCL has caused significant improvement in transient stability keeping the deviation in active and reactive power during faults to minimum level.


Sign in / Sign up

Export Citation Format

Share Document