Prediction of Induced Voltages on Ports in Complex, Three-Dimensional Enclosures With Apertures, Using the Random Coupling Model

2016 ◽  
Vol 58 (5) ◽  
pp. 1535-1540 ◽  
Author(s):  
Jesus Gil Gil ◽  
Zachary B. Drikas ◽  
Tim D. Andreadis ◽  
Steven M. Anlage
1974 ◽  
Vol 61 (3) ◽  
pp. 936-946 ◽  
Author(s):  
Eric J. Heller ◽  
Stuart A. Rice

Author(s):  
Gabriele Gradoni ◽  
Thomas M. Antonsen ◽  
Ed Ott ◽  
Steven M. Anlage

2021 ◽  
Author(s):  
Mohammed Yahya

An intracranial aneurysm (ICA) is the localized dilated of cerebral arterial segment due to a degenerative arterial disease causing local wall weakness. Sudden ICA rupture of cerebral aneurysms is the leading cause of subarachnoid haemorrhage (SAH) which is a serious disease associated with high mortality and morbidity. In this research work, we have developed and validated a finite-element fluid-structure interaction (FSI) 2-way coupling model using COMSOL Multiphysics® software package. We applied the model to three idealized intracranial elastic arteries under the Newtonian blood flow assumption. The blood flow was characterized as a steady flow velocity at the inflow and various values of blood pressure at the outflow, while the arterial wall was modeled as a hyperelastic neo-Hookean material. The result shows the significantly weakened wall shear stress (WSS) at the aneurysm fundus and intensified WSS at the distal side of aneurysm neck. The wall deformation and WSS may play an important role in the growth and rupture of ICAs. Moreover, based on these results we postulate that lateral saccular aneurysms located on highly curved arteries are subjected to higher hemodynamic stresses and are more prone to rupture.


2011 ◽  
Vol 1 (32) ◽  
pp. 5
Author(s):  
Yasunori Watanabe ◽  
Yuta Mitobe ◽  
Yasuo Niida ◽  
Ayumi Saruwatari

A particle / turbulence two-way coupling model, integrated with conventional stochastic and sub-grid stress models of three-dimensional Large Eddy Simulation (LES), has been applied to the particle-laden turbulent flow in a wave boundary layer developed over seabed with the aim to understand dynamic effects of the particle size and number density to the suspension process in shearing flow over the seabed. While the particle size affects local velocity fluctuations, the particle population significantly induces secondary large-scale flows varying over a scale of the wavelength, and intensifies the turbulent energy near the bed. The particle-induced turbulence may result in additional suspension from the bed, causing a recursive suspension process via the particle turbulence interaction in the boundary layer.


Author(s):  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
Tadeusz Opasiak ◽  
Grzegorz Litak

AbstractThis paper investigates the nonlinear dynamics of a flexible tyre coupling via computer modelling and simulation. The research mainly focused on identifying basins of attraction of coexisting solutions of the formulated phenomenological coupling model. On the basis of the derived mathematical model, and by assuming ranges of variability of the control parameters, the areas in which chaotic clutch movement takes place are determined. To identify multiple solutions, a new diagram of solutions (DS) was used, illustrating the number of coexisting solutions and their periodicity. The DS diagram was drawn based on the fixed points of the Poincaré section. To verify the proposed method of identifying periodic solutions, the graphic image of the DS was compared to the three-dimensional distribution of the largest Lyapunov exponent and the bifurcation diagram. For selected values of the control parameter ω, coexisting periodic solutions were identified, and basins of attraction were plotted. Basins of attraction were determined in relation to examples of coexistence of periodic solutions and transient chaos. Areas of initial conditions that correspond to the phenomenon of unstable chaos are mixed with the conditions of a stable periodic solution, to which the transient chaos is attracted. In the graphic images of the basins of attraction, the areas corresponding to the transient and periodic chaos are blurred.


2012 ◽  
Vol 1 (33) ◽  
pp. 33 ◽  
Author(s):  
Jinhua Wang ◽  
Jinshan Zhang

A three–dimensional integrated model is developed for simulating oil spills transport and fate in seas. The model contains two main modules, flow and transport-fate module. The transport module uses an unstructured finite volume wave-current coupling model, giving a more accurate result compared to structured model, especially for a region has a complex coastline. In the transport-fate module the oil dispersion is solved using a particle-tracking method. Horizontal diffusion is simulated using a random walk techniques in a Monte Carlo framework while vertical diffusion process is solved based on the Langeven equation. The model simulates the most significant processes which affect the motion of oil particles, such as: advection, surface spreading, evaporation, dissolution, emulsification, and turbulent diffusion, the interaction of the oil particles with the shoreline, sedimentation and the temporal variations of oil viscosity, density, and surface-tension. This model has been applied to simulate the oil spill accident at the strait of Bohai Sea. In comparison with the observations, the numerical results indicate that the model is reasonably accurate.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wei Diao ◽  
Hao Yuan ◽  
Liang Chen ◽  
Xujin Zhang ◽  
Cunze Zhang

The temperature distribution and pollutant distribution in large reservoirs have always been a hotspot in the field of hydraulics and environmentology, and the three-dimensional numerical modeling that can effectively simulate the interactions between the temperature fields, concentration fields, and flow fields needs to be proposed. The double-diffusive convection lattice Boltzmann method is coupled with a single-phase volume of fluid model for simulating heat and contaminant transfer in large-scale free surface flows. The coupling model is used to simulate the double-diffusive natural convection in a cubic cavity and the temperature distribution of a model reservoir. The mechanism of convection-diffusion, gravity sinking flow, and the complexity of the temperature and the pollutant redistribution process are analyzed. Good agreements between the simulated results and the reference data validate the accuracy and effectiveness of the proposed coupling model in studying free surface flows with heat and contaminant transfer. At last, the temporal and spatial variations of flow state, water temperature stratification, and pollutant transport in the up-reservoir of a pumped-storage power station are simulated and analyzed by the proposed model. The obtained variations of the flow field agree well with the observations in the physical model test and in practical engineering. In addition, the simulated temperature field and concentration field are also consistent with the general rules, which demonstrates the feasibility of the coupling model in simulating temperature and pollutant distribution problems in realistic reservoirs and shows its good prospects in engineering application.


Sign in / Sign up

Export Citation Format

Share Document