deep foundation pit
Recently Published Documents


TOTAL DOCUMENTS

418
(FIVE YEARS 172)

H-INDEX

8
(FIVE YEARS 3)

2022 ◽  
Vol 6 (1) ◽  
pp. 10-19
Author(s):  
Yi Gong ◽  
Bingyang Yang

This paper reviews the summary and analysis of special technical safety schemes for hazardous and ultrahazardous activities, supported by housing scaffolding, installation, and dismantling of outer wall attached tower crane, deep foundation pit with supporting structure, municipal bridge box girder formwork support, as well as grooved Larsen steel sheet pile, which are commonly seen in recent years, so as to enhance the pertinence, rationality, and economy of the special program to strengthen safety.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012051
Author(s):  
Ruibin Yang ◽  
Xinsheng Li ◽  
Dongzhou Xie ◽  
Hongte Meng

Abstract At present, in deep foundation pit engineering, on the one hand, practice is ahead of theory, and on the other hand, theory can not correctly reflect the actual construction process and environmental effects. In order to further study the distribution and change law of earth pressure and internal force of pile body in deep foundation pit pile-anchor supporting system, field monitoring test of earth pressure and pile body reinforcement stress was carried out. The monitoring results show that before excavation, the distribution of earth pressure has a great relationship with the layering of the soil, and it is distributed in sections along the depth. Compared with the theoretical static earth pressure, the measured data of the upper depth is relatively small; after excavation, the overall earth pressure is distributed along the depth in a “z” shape under the non-limiting state. As the excavation progresses, the magnitude of the reduction of the earth pressure varies from place to place, and the magnitude of the decrease of the soil with better properties is not large; after the excavation, the stress and earth pressure of the pile reinforcement correspond to each other, and the distribution is also nonlinear. The existence of anchor tension has an obvious effect on improving the internal force of the pile. The selected earth pressure calculation methods have some discrepancies in the calculation of the earth pressure value of the project, and they need to be further improved. The research in this paper can provide reference and reference for the calculation of earth pressure and support design of pile-anchor supported foundation pit.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012061
Author(s):  
Zhao Long ◽  
Yilei Shi ◽  
Weili Li ◽  
Shuaihua Ye

Abstract In this paper, the influence of space effect on soil pressure and deformation of deep foundation pit was considered, and the finite soil pressure calculation model was established. The soil pressure of deep foundation pit was calculated by assuming the slip surface and using the finite soil limit equilibrium theory. Then, PLAXIS 3D finite element software was used to establish finite element models of different plane sizes and depths. The distribution regulation of side wall soil pressure and deformation of deep foundation pit was calculated. Finally, the results of finite soil pressure calculation was compared with finite element method. The results shown that: The soil pressure of small deep foundation pit was affected by space effect, and the soil pressure and deformation decrease significantly along the foundation pit depth. Shear fracture Angle was related to the ratio of width to depth of foundation pit, and it was no longer a constant value of 45°+φ/2. Therefore, the spatial effect should be considered in the calculation of soil pressure of small deep foundation pit. The research results can provide some guidance for the design and calculation of similar small size deep foundation pit.


Sign in / Sign up

Export Citation Format

Share Document