oil viscosity
Recently Published Documents


TOTAL DOCUMENTS

1047
(FIVE YEARS 324)

H-INDEX

32
(FIVE YEARS 6)

Author(s):  
Ibrahim Elganidi ◽  
Basem Elarbe ◽  
Norida Ridzuan ◽  
Norhayati Abdullah

AbstractWax deposition is considered one of the most serious operational issues in the crude oil pipelines. This issue occurs when the crude oil temperature decreases below the temperature of wax appearance and paraffin wax starts to precipitate on the pipelines’ inner walls. As a result, the crude oil flow is impeded because of the precipitated wax. The use of polymeric pour point depressants has obtained significant interest among researchers as an approach of wax control for enhancing the flowability of the waxy crude oil. PPD of poly(behenyl acrylate -co-stearyl methacrylate-co- maleic anhydride) (BA-co-SMA-co-MA) was facilely synthesised by the use of free radical polymerisation. The variation of the PPD structure was studied by choosing several essential parameters like monomers ratio, reaction time, initiator concentration, and reaction temperature. Furthermore, viscosity measurement, pour point, and cold finger apparatus have been employed to evaluate the efficiency of the synthesised Polymer. The chemical structure of poly(BA-co-SMA-co-MA) has been identified through the use of Fourier transform infrared as well as nuclear magnetic resonance. The experimental findings demonstrated that the ideal conditions for obtaining the highest yield were 1.5% initiator concentration, reaction time and temperature of 8 h and 100 °C, respectively, and monomer ratio of 1:1:1 (BA:SMA:MA). Under these ideal conditions, the prepared terpolymer reduced the crude oil viscosity at 30 °C and 1500 ppm from 7.2 to 3.2 mPa.s. The cold finger experiment demonstrated that after poly(BA-co-SMA-co-MA) was used as a wax inhibitor, the maximum efficiency of paraffin inhibition of 45.6% was achieved at 200 rpm and 5 °C. Besides, the best performance in depressing the pour point by ΔPP 14 ℃ observed at the concentration of 1500 ppm, which can change the growth characteristics of wax crystals and delay the aggregation of asphaltene and resin, thus effectively improving the flowability of crude oil.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 411
Author(s):  
Aleksei O. Malahov ◽  
Emil R. Saifullin ◽  
Mikhail A. Varfolomeev ◽  
Sergey A. Nazarychev ◽  
Aidar Z. Mustafin ◽  
...  

The selection of effective surfactants potentially can mobilize oil up to 50% of residuals in mature carbonate oilfields. Surfactants’ screening for such oilfields usually is complicated by the high salinity of water, high lipophilicity of the rock surface, and the heterogeneous structure. A consideration of features of the oilfield properties, as well as separate production zones, can increase the deep insight of surfactants’ influence and increase the effectiveness of surfactant flooding. This article is devoted to the screening of surfactants for two production zones (Bashkirian and Vereian) of the Ivinskoe carbonate oilfield with high water salinity and heterogeneity. The standard core study of both production zones revealed no significant differences in permeability and porosity. On the other hand, an X-ray study of core samples showed differences in their structure and the presence of microporosity in the Bashkirian stage. The effectiveness of four different types of surfactants and surfactant blends were evaluated for both production zones by two different oil displacement mechanisms: spontaneous imbibition and filtration experiments. Results showed the higher effect of surfactants on wettability alteration and imbibition mechanisms for the Bashkirian cores with microporosity and a higher oil displacement factor in the flooding experiments for the Vereian homogeneous cores with lower oil viscosity.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Jie Yu ◽  
Hongping Quan ◽  
Zhiyu Huang ◽  
Pengfei Li ◽  
Shihao Chang

RSC Advances ◽  
2022 ◽  
Vol 12 (4) ◽  
pp. 2160-2170
Author(s):  
Evangelia Argentou ◽  
Carlos Amador ◽  
Anju Deepali Massey Brooker ◽  
Serafim Bakalis ◽  
Peter J. Fryer ◽  
...  

The synergistic effect of oil viscosity and oil droplet size on the deposition profile of oil on cotton fabric was studied using polydimethylsiloxane (PDMS) as a model oil-in-water emulsion system.


Author(s):  
I. Sh. Mingulov ◽  
◽  
M. D. Valeev ◽  
V. V. Mukhametshin ◽  
L. S. Kuleshova ◽  
...  

The article is devoted to the diagnostics of the well pumping equipment operation using wells production viscosity measurement results obtained by the developed field device VNP 1-4, 0-90. The method for making measurements with a field oil viscometer was developed in accordance with the provisions of GOST R 8.563, GOST R ISO 5725-2. It has gained certification and entered the State Register of the Russian Federation. On the basis of preliminary laboratory studies of oils viscosity from the group of fields of LLC UK «Sheshmaoil», a formula was obtained for the dependence of oil emulsions viscosity on temperature and the content of formation water in them. Viscosity measurements obtained with the developed device in field conditions have shown the applicability of the method for calculating the watered oil viscosity.The application of the results of measuring the watered oil viscosity at the wellhead allows diagnosing the downhole sucker rod pump unit operation based on the construction of a dynamic model of its operation. Keywords: equipment diagnostics; water cut; temperature; fluid viscosity; dynamic model; sucker rod pump.


Author(s):  
V. A. Sudakov ◽  
◽  
M. S. Shipaeva ◽  
D. K. Nurgaliev ◽  
Z. M. Rizvanova ◽  
...  

High-viscosity oil belong to unconventional sources of hydrocarbon raw materials, the share of which is growing every year. The development of this complex type of raw material requires modern scientific technologies in order to maintain the production of hydrocarbons at the same level. Technologies for the extraction and processing of heavy oil are different from traditional ones. First of all, these deposits are located at a shallow depth, but are classified as difficult to recover due to the complex geological structure and high anomalous oil viscosity. The objective of this work is a deeper understanding of the geochemical composition of heavy oil deposits, taking into account the peculiarities of their geological structure. This is important for the successful development of new and improvement of existing technologies for the extraction and processing of heavy oil and the implementation of the resource potential of heavy oils in the Republic of Tatarstan. Keywords: heavy oil; unconventional oil; biodegradation; GC-MS; geochemical methods.


2021 ◽  
Vol 37 (6) ◽  
pp. 1287-1294
Author(s):  
Ioana Stanciu ◽  
Noureddine Ouerfelli

Mathematical models that describe the variation of soybean oil viscosity with temperature according to the recent WLF and VTF (or VFT) equations and traditionally by the Arrhenius equation. The Arrhenius equation shows that the viscosity of the oil is proportional to the absolute temperature and is determined by the activation energy parameter. In Arrhenius' equation the absolute temperature is replaced by T + b where both adjustable T and b are in ° C. The mathematical models described by the equations WLF and VTF, are equal to each other. All three equations are in the same model when used for experimental data of temperature-viscosity dependence, they give exactly the same very high regression coefficient.


Author(s):  
Mikhail Lubkov ◽  
Oksana Zakharchuk ◽  
Viktoriia Dmytrenko ◽  
Oleksandr Petrash

Numerical modeling of the distribution of the reservoir pressure drop in the vicinity of an operating well was carried out taking into account the inhomogeneous distribution of filtration characteristics (permeability and oil viscosity) in the near and distant zones of the well operation in order to study the practical aspects of filtration in heterogeneous oil-bearing formations based on a combined finite-element-difference method for non-stationary problem of piezoconductivity. The use of the combined finite-element-difference method enables to combine the advantages of the finite-element method and the finite difference method: to model geometrically complex areas, to find the value at any point of the object under study, while the implicit difference scheme. It is shown that the intensity of filtration processes in the vicinity of the operating well depends mainly on the permeability, and, to a lesser extent, on the viscosity of the oil. Moreover, the influence of the permeability of the oil phase in the remote zone (Rd < 5 m) is greater than the effect in the close zone (Rd > 5 m) of the operating well. In the case of low permeability of the oil phase in the vicinity of the existing well, to maintain stable oil production, it is necessary to place an injection well near the production well. Using the method suggested, it is possible to predict the effect of the injection well on the formation pressure distribution in the formation. The scientific novelty of the work lies in the study of the influence of the heterogeneous permeability and oil viscosity distribution on the reservoir pressures distribution around the wells by modeling filtration processes based on a combined finite-element-difference method. The practical significance of the research results comes down to confirming the close relationship between the heterogeneity of the porous medium and the reservoir pressures distribution around an operating producing well. The combined finite-element-difference method used in this work can be used to solve other filtration problems (for example, to calculate the gas saturation of a reservoir, create a method for calculating well flow rates, assess the effect of injection wells on filtration processes).


Sign in / Sign up

Export Citation Format

Share Document